1,619 research outputs found

    Remarks on existence and uniqueness of Cournot-Nash equilibria in the non-potential case

    Get PDF
    This article is devoted to various methods (optimal transport, fixed-point, ordinary differential equations) to obtain existence and/or uniqueness of Cournot-Nash equilibria for games with a continuum of players with both attractive and repulsive effects. We mainly address separable situations but for which the game does not have a potential. We also present several numerical simulations which illustrate the applicability of our approach to compute Cournot-Nash equilibria

    From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem

    Get PDF
    The notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of NN player games. Analysis of Nash equilibria is however a complex issue when the number of players is large. In this article we emphasize the role of optimal transport theory in: 1) the passage from Nash to Cournot-Nash equilibria as the number of players tends to infinity, 2) the analysis of Cournot-Nash equilibria

    Egomunities, Exploring Socially Cohesive Person-based Communities

    Get PDF
    In the last few years, there has been a great interest in detecting overlapping communities in complex networks, which is understood as dense groups of nodes featuring a low outbound density. To date, most methods used to compute such communities stem from the field of disjoint community detection by either extending the concept of modularity to an overlapping context or by attempting to decompose the whole set of nodes into several possibly overlapping subsets. In this report we take an orthogonal approach by introducing a metric, the cohesion, rooted in sociological considerations. The cohesion quantifies the community-ness of one given set of nodes, based on the notions of triangles - triplets of connected nodes - and weak ties, instead of the classical view using only edge density. A set of nodes has a high cohesion if it features a high density of triangles and intersects few triangles with the rest of the network. As such, we introduce a numerical characterization of communities: sets of nodes featuring a high cohesion. We then present a new approach to the problem of overlapping communities by introducing the concept of ego-munities, which are subjective communities centered around a given node, specifically inside its neighborhood. We build upon the cohesion to construct a heuristic algorithm which outputs a node's ego-munities by attempting to maximize their cohesion. We illustrate the pertinence of our method with a detailed description of one person's ego-munities among Facebook friends. We finally conclude by describing promising applications of ego-munities such as information inference and interest recommendations, and present a possible extension to cohesion in the case of weighted networks

    Triangles to Capture Social Cohesion

    Get PDF
    Although community detection has drawn tremendous amount of attention across the sciences in the past decades, no formal consensus has been reached on the very nature of what qualifies a community as such. In this article we take an orthogonal approach by introducing a novel point of view to the problem of overlapping communities. Instead of quantifying the quality of a set of communities, we choose to focus on the intrinsic community-ness of one given set of nodes. To do so, we propose a general metric on graphs, the cohesion, based on counting triangles and inspired by well established sociological considerations. The model has been validated through a large-scale online experiment called Fellows in which users were able to compute their social groups on Face- book and rate the quality of the obtained groups. By observing those ratings in relation to the cohesion we assess that the cohesion is a strong indicator of users subjective perception of the community-ness of a set of people

    Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations

    Get PDF
    A time-domain harmonic balance method for the analysis of almost-periodic (multi-harmonics) flows is presented. This method relies on Fourier analysis to derive an efficient alternative to classical time marching schemes for such flows. It has recently received significant attention, especially in the turbomachinery field where the flow spectrum is essentially a combination of the blade passing frequencies. Up to now, harmonic balance methods have used a uniform time sampling of the period of interest, but in the case of several frequencies, non-necessarily multiple of each other, harmonic balance methods can face stability issues due to a bad condition number of the Fourier operator. Two algorithms are derived to find a non-uniform time sampling in order to minimize this condition number. Their behavior is studied on a wide range of frequencies, and a model problem of a 1D flow with pulsating outlet pressure, which enables to prove their efficiency. Finally, the flow in a multi-stage axial compressor is analyzed with different frequency sets. It demonstrates the stability and robustness of the present non-uniform harmonic balance method regardless of the frequency set

    Biais dans les mesures obtenues par un réseau de capteurs sans fil

    Get PDF
    International audienceIn the area of complex networks, research has been stimulated by the availability of important data sets obtained through automatic measurement. In this article, we focus on interaction data in a hospital, gathered through the use of a wireless sensor network. We highlight the bias introduced by the measurement system and propose a method to reconstruct the original signal which evidences phenomenon which were not visible on the raw data

    Optimal Transport and Cournot-Nash Equilibria

    Get PDF
    We study a class of games with a continuum of players for which Cournot-Nash equilibria can be obtained by the minimisation of some cost, related to optimal transport. This cost is not convex in the usual sense in general but it turns out to have hidden strict convexity properties in many relevant cases. This enables us to obtain new uniqueness results and a characterisation of equilibria in terms of some partial differential equations, a simple numerical scheme in dimension one as well as an analysis of the inefficiency of equilibria

    Optimal Transport and Cournot-Nash Equilibria

    Get PDF
    We study a class of games with a continuum of players for which Cournot-Nash equilibria can be obtained by the minimisation of some cost, related to optimal transport. This cost is not convex in the usual sense in general but it turns out to have hidden strict convexity properties in many relevant cases. This enables us to obtain new uniqueness results and a characterisation of equilibria in terms of some partial differential equations, a simple numerical scheme in dimension one as well as an analysis of the inefficiency of equilibria

    From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem

    Get PDF
    The notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of N player games. Analysis of Nash equilibria is however a complex issue when the number of players is large. In this article we emphasize the role of optimal transport theory in: 1) the passage from Nash to Cournot-Nash equilibria as the number of players tends to infinity, 2) the analysis of Cournot-Nash equilibria
    corecore