255 research outputs found
Gestión de Recursos Humanos : Aplicación de la Ley 502, uso adecuado de los formatos y manuales internos de la Alcaldia de El Crucero
La Administración de Recursos Humanos se aplica en un contexto de
organizaciones y personas. Administrar personas significa tener aptitud, capacidad para liderar, amplio espíritu de tolerancia, ser proactivo, comunicativo, responsable, con iniciativa y dotados de habilidades y conocimientos que ayudan a administrar al talento humano.Para las Alcaldia la gestión de la administración de recursos humanos esta dada mediante la correcta Aplicación de la Ley 502, de los Formatos y de los Manuales Internos, para este caso específico se toma la Alcaldía de El
Crucero.
Es por eso que en la Alcaldía de El Crucero, se ha ido rompiendo barreras, es decir más allá, antes existían un tabú direccional, en la área de recursos humanos, por lo que hoy en día, se ha permitido ir consolidando y cerrando la brecha relacional entre el servidor público y el departamento de recursos humanos llegando a una comunicación más amplia.
El desarrollo de esta investigación se plantea bajo la perspectiva metodológica del modelo descriptivo y presenta la siguiente estructura:
Capítulo I:Denominado Manuales Administrativos de una organización describe las generalidades de manuales, sus conceptos, importancia, clasificación, ventajas y desventajas, los aspectos claves de los manuales, su implementación y manejo de la información en las tareas asignadas en los colaboradores según área de trabajo.
Capítulo II: Denominado Ley 502, Ley de Carrera Administrativa Municipal, en este acápite abordaremos los conceptos básicos de la ley y otros conceptos que tiene que ver con el manejo de los gobiernos municipales, así como las características, implementación, importancias y manejo de la ley en cada una de las dependencias según el uso de los diferentes instrumentos que se necesitan en una municipalidad, con el fin de cumplir sus obligaciones y responsabilidades
profesionales que la ley otorga, al personal público.
Capítulo III: denominado Manuales Internos de la Municipalidad El Crucero, en este punto, se pretende dar a conocer la importancia del uso y manejo de los instrumentos realizados en el departamento de recursos humanos, considerando que su procedimiento se cumpla y se utilice los formatos adecuados para tener personal capacitado que puedan dar un mejor servicio a la comunidad.
Capítulo IV: Denominado Descripción de la Alcaldía del Poder Ciudadano El Crucero, con este inciso lo que se pretende es dar una breve descripción sobre las características del municipio y de la alcaldía, con el fin de conocer un poco de su geografía y aspectos culturales.
Dentro de la conclusión fundamental hacemos mención, que hemos obtenido amplios conocimientos sobre toda la teoría existente en materia de Formatos y Manuales Internos de Personal, así mismo también identificamos la forma como se lleva a cabo ese proceso en la El Crucero el uso de los mismo e intentamos proponer que dicho procedimiento, sean apegándonos al contenido de la Ley 502, Ley de Carrera Administrativa Municipal, con el humilde deseo de aportar nuestro granito de arena a la consecución de los procesos de modernización que desde hace un tiempo viene implementando la Alcaldía de El Crucero
AIM5LA: A latency-aware deep reinforcement learning-based autonomous intersection management system for 5G communication networks
The future of Autonomous Vehicles (AVs) will experience a breakthrough when collective
intelligence is employed through decentralized cooperative systems. A system capable of controlling
all AVs crossing urban intersections, considering the state of all vehicles and users, will be able to
improve vehicular flow and end accidents. This type of system is known as Autonomous Intersection
Management (AIM). AIM has been discussed in different articles, but most of them have not considered the communication latency between the AV and the Intersection Manager (IM). Due to the
lack of works studying the impact that the communication network can have on the decentralized
control of AVs by AIMs, this paper presents a novel latency-aware deep reinforcement learning-based
AIM for the 5G communication network, called AIM5LA. AIM5LA is the first AIM that considers the
inherent latency of the 5G communication network to adapt the control of AVs using Multi-Agent
Deep Reinforcement Learning (MADRL), thus obtaining a robust and resilient multi-agent control
policy. Beyond considering the latency history experienced, AIM5LA predicts future latency behavior
to provide enhanced security and improve traffic flow. The results demonstrate huge safety improvements compared to other AIMs, eliminating collisions (on average from 27 to 0). Further, AIM5LA
provides comparable results in other metrics, such as travel time and intersection waiting time, while
guaranteeing to be collision-free, unlike the other AIMs. Finally, compared to other traffic light-based
control systems, AIM5LA can reduce waiting time by more than 99% and time loss by more than 95%.This work was supported by the Grant PID2020-116329GB-C22 funded by MCIN/AEI/10.13039 /501100011033 and 20740/FPI/18 (Fundación Séneca, Región de Murcia, Spain)
Learning from oracle demonstrations-A new approach to develop autonomous intersection management control algorithms based on multiagent deep reinforcement learning
Worldwide, many companies are working towards safe and innovative control systems for
Autonomous Vehicles (AVs). A key component is Autonomous Intersection Management (AIM) systems,
which operate at the level of traffic intersections and manage the right-of-way for AVs, thereby improving
flow and safety. AIM traditionally uses control policies based on simple rules. However, Deep Reinforcement
Learning (DRL) can provide advanced control policies with the advantage of proactively reacting and
forecasting hazardous situations. The main drawback of DRL is the training time, which is fast in simple tasks
but not negligible when addressing real-world problems with multiple agents. Learning from Demonstrations (LfD) emerged to solve this problem, significantly speeding up training, and reducing the exploration
problem. The challenge is that LfD requires an expert to extract new demonstrations. Therefore, in this paper,
we propose the use of an agent, previously trained by imitation learning, to act as an expert to leverage LfD.
We named this new agent Oracle, and our new approach was called Learning from Oracle Demonstrations
(LfOD). We implemented this novel method over the DRL TD3 algorithm, incorporating significant changes
to TD3 that allowed the use of Oracle demonstrations. The complete version was called TD3fOD. The results
obtained in the AIM training scenario showed that TD3fOD notably improves the learning process compared
with TD3 and DDPGfD, speeding up learning to 5–6 times, while the policy found offered both significantly
lower variance and better learning ability. The testing scenario also showed a significant improvement in
multiple key performance metrics compared with other vehicle control techniques on AIM, such as reducing waiting time by more than 90% and significantly decreasing fuel or electricity consumption and emissions,
highlighting the benefits of LfOD.This work was supported in part by the MCIN/AEI/10.13039/501100011033 under Grant PID2020-116329GB-C22; and in part by the Fundación Séneca, Región de Murcia, Spain, under Grant 20740/FPI/18
Multi-agent deep reinforcement learning to manage connected utonomous vehicles at tomorrow's intersections
In recent years, the growing development of Connected Autonomous Vehicles (CAV), Intelligent Transport Systems
(ITS), and 5G communication networks have led to the advent
of Autonomous Intersection Management (AIM) systems. AIMs
present a new paradigm for CAV control in future cities, taking
control of CAVs in scenarios where cooperation is necessary and
allowing safe and efficient traffic flows, eliminating traffic signals.
So far, the development of AIM algorithms has been based on
basic control algorithms, without the ability to adapt or keep
learning new situations. To solve this, in this paper we present a new
advanced AIM approach based on end-to-end Multi-Agent Deep
Reinforcement Learning (MADRL) and trained using Curriculum
through Self-Play, called advanced Reinforced AIM (adv.RAIM).
adv.RAIM enables the control of CAVs at intersections in a collaborative way, autonomously learning complex real-life traffic
dynamics. In addition, adv.RAIM provides a new way to build
smarter AIMs capable of proactively controlling CAVs in other
highly complex scenarios. Results show remarkable improvements
when compared to traffic light control techniques (reducing travel
time by 59% or reducing time lost due to congestion by 95%), as well
as outperforming other recently proposed AIMs (reducing waiting
time by 56%), highlighting the advantages of using MADRL.This work was supported in part by MCIN/AEI/10.13039/501100011033 under Grant PID2020-116329GB-C22, and in part by the Fundación Séneca, Región de Murcia, Spain under Grant 20740/FPI/18
Intelligent IoT systems for traffic management: A practical application
The incorporation of Artificial Intelligence algorithms in Intelligent Transportation Systems gives rise to new opportunities for a more sustainable urban mobility. However, one
of the main challenges is to decide when and where these techniques should be applied;
several options appear, such as cloud computing, fog computing, edge computing, or even
edge devices. In this paper, an Internet of Things-based solution for smart traffic management is presented. Using the lightweight Random Early Detection for Vehicles Dynamic
mechanism as a basis, we optimize using evolutionary algorithms. Random Early Detection for Vehicles Dynamic can be applied in signaled intersections to proactively detect
incipient congestion and set the best cycle and phases of traffic lights. Then, the authors
demonstrate that once Random Early Detection for Vehicles Dynamic has been appropriately optimised offline, it can be later used in unknown traffic scenarios without the
burden of applying Artificial Intelligence in constrained Internet of Things devices. The
performance of this mechanism is widely tested with the SUMO simulation tool. Results
show that this improved version, called iREDVD, notably reduces the vehicles’ waiting
time, average trip time, fuel consumption, and emission of particles and gaseous pollutants
compared with other proposals.This work was supported by the AEI/FEDER, UE project grant TEC2016-76465-C2-1-R (AIM), by DGT-Ministerio delInterior, project grant SPIP2017-02230 (STREET), and by a predoctoral contract for the formation of the research personnel financed by Consejería de Empleo, Universidades, Empresay Medio Ambiente of the CARM, through the FundaciónSéneca - Agencia de Ciencia y Tecnología of the Region of Murcia, Spain
The rise and the importance of sports coaching
El coaching deportivo es una rama que con el paso del tiempo ha ido ganando más peso
en nuestra sociedad. La importancia que tiene tener a los deportistas con una fuerza
mental para que estos puedan llegar al éxito es algo fundamental en lo que trabaja día a
día la figura del coaching deportivo. Expertos sobre la materia hacen especial hincapié
en que, ya desde bien pequeños, se le tienen que inculcar a los futuros profesionales
unos valores y parámetros determinados para que en su futuro no muy lejano tengan las
condiciones necesarias para triunfar. Por ello, decidí indagar en el objetivo del estudio
realizado, que el observar y demostrar el auge y la expansión que está teniendo la rama
del coaching deportivo. Además, eso es algo que se trasmite de generación en
generación. Es decir, esto viene de más atrás, por lo que si a ti te han enseñado esas
aptitudes en un pasado, se las transmitirás a tus hijos casi de manera innata. De esa
manera, se estará dando un paso importante hacia su formación, cosa que se puede ver
de manera más que clara a través de los gráficos sobre las soluciones de unos test
psicológicos orientados hacia ellos. Sin embargo, lo cierto es que en este país este tema
no está respaldado como se merece por los medios de comunicación, ya que son muy
pocos los que hacen “eco” de su repercusión. No obstante, lo que también es cierto es
que, en determinados meses (abril, mayo y junio), el número de publicaciones en
relación al coaching deportivo crece aunque no en muy alta medida.Sports coaching is a branch that over time has been gaining more weight in our society.
The importance of having athletes with a mental strength so that they can achieve
success is fundamental in what the figure of sports coaching works day by day. Experts
on the subject put special emphasis on the fact that, since they are very young, certain
values and parameters have to be inculcated to future professionals so that in their not
too distant future they have the necessary conditions to succeed. Therefore, I decided to
investigate the objective of the study, which is to observe and demonstrate the boom
and expansion that the branch of sports coaching is having. In addition, that is
something that is transmitted from generation to generation. That is, this comes from further back, so if you have been taught those skills in the past, you will transmit them
to your children almost innately. In this way, an important step will be taken towards
their formation, something that can be seen in a more than clear way through the
graphics on the solutions of psychological tests oriented towards them. However, the
truth is that in this country this issue is not backed up as it deserves by the media, as
there are very few who "echo" its impact. However, what is also true is that, in certain
months (April, May and June), the number of publications in relation to sports coaching
is growing, although not to a very high degree
Estilos de Aprendizaje y Rendimiento Academico del Estudiante de la Carrera Profesional de Estomatología, Universidad Peruana del Oriente - 2016
El objetivo de la siguiente investigación fue determinar la relación entre los estilos de aprendizaje y el rendimiento académico de los estudiantes de la carrera de Estomatología de la Universidad Peruana del Oriente, en el año 2016. El estudio fue Descriptivo y Correlacional
Estudio de localización, diseño y construcción de una planta de compostaje para gestión de residuos de explotaciones agropecuarias, industrias agroalimentarias y lodos de depuradora
Se trata de una planta de compostaje por pilas estáticas con aireación forzada. Para la cual se ha realizado un estudio de localización con el fin de encontrar una ubicación óptima para su funcionamiento. Además, es una planta ecológica que utiliza exclusivamente el agua de lluvia. También se ha calculado toda la estructura de la nave que albergará todo lo necesario para el desarrollo de la actividad. Para ello se ha diseñado toda la instalación de fontanería, la instalación eléctrica, la instalación de saneamiento, la ventilación y los biofiltros
GIS-based assessment for the potential of implementation of food-energy-water systems on building rooftops at the urban level
This research develops a bottom-up procedure to assess the potential of food-energy-water (FEW) systems on the rooftops of buildings in an urban district in Spain considering the urban morphology of the built environment and obtains accurate assessments of production and developmental patterns. A multicriteria decision-making technique implemented in a geographical information system (GIS) environment was used to extract suitable rooftop areas. To implement this method, the slope (tilt), aspect (azimuth), shading, and solar radiation of the rooftops were calculated using LiDAR (Light Detection and Ranging) data and building footprints. The potential of FEW system implementation was analysed at the building and morphology levels. The results showed several differences between residential and non-residential urban morphologies. Industrial areas contained the highest productivity for FEW systems. The production was 2.51 kg of tomatoes/m2, 48 kWh of photovoltaic energy/m2, and 0.16 l of rainwater/m2. Regarding the residential urban morphologies, the more compact tents resulted in better performance. Among the FEW systems, although water could best benefit from the features of the entire roof surface, the best production results were achieved by energy. The food system is less efficient in the built environment since it requires flat roofs. The methodology presented can be applied in any city, and it is considered optimal in the European context for the development of self-production strategies for urban environments
- …