131 research outputs found

    Consórcios de caupi e milho em cultivo orgùnico para produção de grãos e espigas verdes.

    Get PDF
    No perĂ­odo de outono-inverno-primavera de 2007, foi conduzido um estudo em SeropĂ©dica, RegiĂŁo Metropolitana do estado do Rio de Janeiro (Baixada Fluminense), com o objetivo de avaliar diferentes tipos de consĂłrcio entre caupi (cv. MauĂĄ) e milho (cv. AG-1051), em sistema orgĂąnico de produção. O experimento foi instalado em ĂĄrea de Argissolo Vermelho-Amarelo no delineamento de blocos ao acaso, com quatro repetiçÔes. Os tratamentos constaram de diferentes Ă©pocas ou intervalos de tempo de semeadura do caupi em relação Ă  do milho, a saber: (E1) 21 dias antes do milho; (E2) 14 dias antes do milho; (E3) 7 dias antes do milho; e (E4) no mesmo dia do milho. Tratamentos correspondentes aos cultivos solteiros do caupi e do milho foram incluĂ­dos, ambos semeados na data do tratamento E4. O cultivo consorciado com o caupi nĂŁo interferiu na produtividade do milho em espigas verdes e tambĂ©m em termos de comprimento e diĂąmetro basal dessas espigas, independentemente do intervalo entre semeaduras. Com referĂȘncia ao caupi, a produtividade em grĂŁos verdes no cultivo solteiro foi superior Ă  dos consĂłrcios com o milho. Os valores obtidos para os Índices de EquivalĂȘncia de Área (IEA), foram todos acima de 1,0, indicando que os consĂłrcios foram eficientes quanto ao desempenho agronĂŽmico/biolĂłgico. Considerando, ainda a produtividade de cada cultura participante do consĂłrcio, a semeadura do caupi antecipada de 21 dias em relação Ă  do milho afigura-se mais adequada ao manejo orgĂąnico adotado e Ă s condiçÔes edafoclimĂĄticas da regiĂŁo

    Proteomic Analysis and Functional Validation of a Brassica oleracea Endochitinase Involved in Resistance to Xanthomonas campestris

    Get PDF
    Black rot is a severe disease caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), which can lead to substantial losses in cruciferous vegetable production worldwide. Although the use of resistant cultivars is the main strategy to control this disease, there are limited sources of resistance. In this study, we used the LC-MS/MS technique to analyze young cabbage leaves and chloroplast-enriched samples at 24 h after infection by Xcc, using both susceptible (Veloce) and resistant (Astrus) cultivars. A comparison between susceptible Xcc-inoculated plants and the control condition, as well as between resistant Xcc-inoculated plants with the control was performed and more than 300 differentially abundant proteins were identified in each comparison. The chloroplast enriched samples contributed with the identification of 600 additional protein species in the resistant interaction and 900 in the susceptible one, which were not detected in total leaf sample. We further determined the expression levels for 30 genes encoding the identified differential proteins by qRT-PCR. CHI-B4 like gene, encoding an endochitinase showing a high increased abundance in resistant Xcc-inoculated leaves, was selected for functional validation by overexpression in Arabidopsis thaliana. Compared to the wild type (Col-0), transgenic plants were highly resistant to Xcc indicating that CHI-B4 like gene could be an interesting candidate to be used in genetic breeding programs aiming at black rot resistance

    IFNG +874T/A polymorphism is not associated with American tegumentary leishmaniasis susceptibility but can influence Leishmania induced IFN-Îł production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon-gamma is a key cytokine in the protective responses against intracellular pathogens. A single nucleotide polymorphism (SNP) located in the first intron of the human IFN-γ gene can putatively influence the secretion of cytokine with an impact on infection outcome as demonstrated for tuberculosis and other complex diseases. Our aim was to investigate the putative association of IFNG+874T/A SNP with American tegumentary leishmaniasis (ATL) and also the influence of this SNP in the secretion of IFN-γ <it>in vitro</it>.</p> <p>Methods</p> <p>Brazilian ATL patients (78 cutaneous, CL, and 58 mucosal leishmaniasis, ML) and 609 healthy volunteers were evaluated. The genotype of +874 region in the IFN-γ gene was carried out by Amplification Refractory Mutational System (ARMS-PCR). <it>Leishmania</it>-induced IFN-γ production on peripheral blood mononuclear cell (PBMC) culture supernatants was assessed by ELISA.</p> <p>Results</p> <p>There are no differences between +874T/A SNP frequency in cases and controls or in ML versus CL patients. Cutaneous leishmaniasis cases exhibiting AA genotype produced lower levels of IFN-γ than TA/TT genotypes. In mucosal cases, high and low IFN-γ producers were clearly demonstrated but no differences in the cytokine production was observed among the IFNG +874T or A carriers.</p> <p>Conclusion</p> <p>Our results suggest that +874T/A polymorphism was not associated with either susceptibility or severity to leishmaniasis. Despite this, IFNG +874T/A SNP could be involved in the pathogenesis of leishmaniasis by influencing the amount of cytokine released by CL patients, although it could not prevent disease development. On the other hand, it is possible that in ML cases, other potential polymorphic regulatory genes such as TNF-α and IL-10 are also involved thus interfering with IFN-γ secretion.</p

    Comparative assessment of mortality risk factors between admission and follow-up models among patients hospitalized with COVID-19

    Get PDF
    Objectives: This study aimed to compare differences in mortality risk factors between admission andfollow-up incorporated models.Methods: A retrospective cohort study of 524 patients with confirmed COVID-19 infection admitted to atertiary medical center in São Paulo, Brazil from 13 March to 30 April 2020. Data were collected onadmission, and the third, eighth and fourteenth days of hospitalization. The hazard ratio (HR) wascalculated and 28-day in-hospital mortality risk factors were compared between admission and follow-up models using a time-dependent Cox regression model.Results: Of 524 patients, 50.4% needed mechanical ventilation. The 28-day mortality rate was 32.8%.Compared with follow-up, admission models under-estimated the mortality HR for peripheral oxygensaturation 100 bpm (1.19 versus 2.04), respiratory rate >24/min (1.01versus 1.82) and mechanical ventilation (1.92 versus 12.93). Low oxygen saturation, higher oxygensupport and more biomarkers–including lactate dehydrogenase, C-reactive protein, neutrophil-lymphocyte ratio, and urea remained associated with mortality after adjustment for clinical factorsat follow-up compared with only urea and oxygen support at admission.Conclusions: The inclusion of follow-up measurements changed mortality hazards of clinical signs andbiomarkers. Low oxygen saturation, higher oxygen support, lactate dehydrogenase, C-reactive protein,neutrophil-lymphocyte ratio, and urea could help with prognosis of patients during follow-up

    Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease

    Get PDF
    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affects approximately 11 million people in Latin America. The involvement of the host's immune response on the development of severe forms of Chagas disease has not been fully elucidated. Studies on the immune response against T. cruzi infection show that the immunoregulatory mechanisms are necessary to prevent the deleterious effect of excessive immune response stimulation and consequently the fatal outcome of the disease. A recall response against parasite antigens observed in in vitro peripheral blood cell culture clearly demonstrates that memory response is generated during infection. Memory T cells are heterogeneous and differ in both the ability to migrate and exert their effector function. This heterogeneity is reflected in the definition of central (TCM) and effector memory (TEM) T cells. Our results suggest that a balance between regulatory and effectors T cells may be important for the progression and development of the disease. Furthermore, the high percentage of central memory CD4+ T cells in indeterminate patients after stimulation suggests that these cells may modulate host's inflammatory response by controlling cell migration to tissues and their effector role during chronic phase of the disease

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    • 

    corecore