88 research outputs found

    Extracting topological features from dynamical measures in networks of Kuramoto oscillators

    Get PDF
    The Kuramoto model for an ensemble of coupled oscillators provides a paradigmatic example of non-equilibrium transitions between an incoherent and a synchronized state. Here we analyze populations of almost identical oscillators in arbitrary interaction networks. Our aim is to extract topological features of the connectivity pattern from purely dynamical measures, based on the fact that in a heterogeneous network the global dynamics is not only affected by the distribution of the natural frequencies, but also by the location of the different values. In order to perform a quantitative study we focused on a very simple frequency distribution considering that all the frequencies are equal but one, that of the pacemaker node. We then analyze the dynamical behavior of the system at the transition point and slightly above it, as well as very far from the critical point, when it is in a highly incoherent state. The gathered topological information ranges from local features, such as the single node connectivity, to the hierarchical structure of functional clusters, and even to the entire adjacency matrix.Comment: 11 pages, 10 figure

    Synchronization in Random Geometric Graphs

    Full text link
    In this paper we study the synchronization properties of random geometric graphs. We show that the onset of synchronization takes place roughly at the same value of the order parameter that a random graph with the same size and average connectivity. However, the dependence of the order parameter with the coupling strength indicates that the fully synchronized state is more easily attained in random graphs. We next focus on the complete synchronized state and show that this state is less stable for random geometric graphs than for other kinds of complex networks. Finally, a rewiring mechanism is proposed as a way to improve the stability of the fully synchronized state as well as to lower the value of the coupling strength at which it is achieved. Our work has important implications for the synchronization of wireless networks, and should provide valuable insights for the development and deployment of more efficient and robust distributed synchronization protocols for these systems.Comment: 5 pages, 4 figure

    Symmetries and Fixed Point Stability of Stochastic Differential Equations Modeling Self-Organized Criticality

    Get PDF
    A stochastic nonlinear partial differential equation is built for two different models exhibiting self-organized criticality, the Bak, Tang, and Wiesenfeld (BTW) sandpile model and the Zhang's model. The dynamic renormalization group (DRG) enables to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.Comment: 19 pages, RevTex, includes 6 PostScript figures, Phys. Rev. E (March 97?

    Synchronization reveals topological scales in complex networks

    Get PDF
    We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology and spectral graph analysis.Comment: 4 pages, 3 figure

    Modelling diffusion of innovations in a social network

    Get PDF
    A new simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information agents decide whether to upgrade their level or not balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.Comment: 4 pages, 5 figures. Final version accepted in PR

    Communication in networks with hierarchical branching

    Get PDF
    We present a simple model of communication in networks with hierarchical branching. We analyze the behavior of the model from the viewpoint of critical systems under different situations. For certain values of the parameters, a continuous phase transition between a sparse and a congested regime is observed and accurately described by an order parameter and the power spectra. At the critical point the behavior of the model is totally independent of the number of hierarchical levels. Also scaling properties are observed when the size of the system varies. The presence of noise in the communication is shown to break the transition. Despite the simplicity of the model, the analytical results are a useful guide to forecast the main features of real networks.Comment: 4 pages, 3 figures. Final version accepted in PR

    Optimal network topologies for local search with congestion

    Get PDF
    The problem of searchability in decentralized complex networks is of great importance in computer science, economy and sociology. We present a formalism that is able to cope simultaneously with the problem of search and the congestion effects that arise when parallel searches are performed, and obtain expressions for the average search cost--written in terms of the search algorithm and the topological properties of the network--both in presence and abscence of congestion. This formalism is used to obtain optimal network structures for a system using a local search algorithm. It is found that only two classes of networks can be optimal: star-like configurations, when the number of parallel searches is small, and homogeneous-isotropic configurations, when the number of parallel searches is large.Comment: 4 pages. Final version accepted in PR

    Correlations in Bipartite Collaboration Networks

    Full text link
    Collaboration networks are studied as an example of growing bipartite networks. These have been previously observed to have structure such as positive correlations between nearest-neighbour degrees. However, a detailed understanding of the origin of this phenomenon and the growth dynamics is lacking. Both of these are analyzed empirically and simulated using various models. A new one is presented, incorporating empirically necessary ingredients such as bipartiteness and sublinear preferential attachment. This, and a recently proposed model of team assembly both agree roughly with some empirical observations and fail in several others.Comment: 13 pages, 17 figures, 2 table, submitted to JSTAT; manuscript reorganized, figures and a table adde

    Universality Classes in Isotropic, Abelian and non-Abelian, Sandpile Models

    Full text link
    Universality in isotropic, abelian and non-abelian, sandpile models is examined using extensive numerical simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric features of the avalanches, as well as scaling functions describing the time evolution of average quantities such as the area and size during the avalanche. Comparing between the abelian Bak-Tang-Wiesenfeld model [P. Bak, C. Tang and K. Wiensenfeld, Phys. Rev. Lett. 59, 381 (1987)], and the non-abelian models introduced by Manna [S. S. Manna, J. Phys. A. 24, L363 (1991)] and Zhang [Y. C. Zhang, Phys. Rev. Lett. 63, 470 (1989)] we find strong indications that each one of these models belongs to a distinct universality class.Comment: 18 pages of text, RevTeX, additional 8 figures in 12 PS file

    Disorder-induced critical behavior in driven diffusive systems

    Full text link
    Using dynamic renormalization group we study the transport in driven diffusive systems in the presence of quenched random drift velocity with long-range correlations along the transport direction. In dimensions d<4d\mathopen< 4 we find fixed points representing novel universality classes of disorder-dominated self-organized criticality, and a continuous phase transition at a critical variance of disorder. Numerical values of the scaling exponents characterizing the distributions of relaxation clusters are in good agreement with the exponents measured in natural river networks
    corecore