601 research outputs found

    Oxidation of the Mantle Wedge by H+ in Aqueous Fluids: A New Interdisciplinary Approach

    Get PDF
    The observation that arc magmas are the most oxidized on Earth have led petrologists to question whether the subduction process might cause oxidation of the sub-arc mantle source. A strong correlation between the input of slab-derived aqueous fluid and Fe3(+)/Fe in arc magmas has led to the hypothesis that slab fluids may facilitiate the transfer of redox potential from oxidized slab material to mantle wedge and subsequently to primary arc melts. Despite this intuitive link, identifying an efficient and ubiquitous chemical process to transfer oxidation state in slab fluids has been challenging. Pure H2O alone is an inefficient oxidizer in the mantle, necessitating another oxidant within the fluid. Commonly invoked components include S or C, which are likely heterogeneously distributed within subducting slabs, and direct transfer of Fe3(+), which is only possible in very solute-rich fluids. Here we present a new mechanism to explain the oxidation of the sub-arc mantle by slab-derived aqueous fluid, wherein dissolved H(+)(aq) is reduced to H2(aq). Redox equilibrium is satisfied by electron transfer from Fe2(+)(s), which is oxidized in the rock to Fe3(+)(s) in the reaction: 2Fe2(+)(s) + 2H(+)(aq) = 2Fe3(+)(s) + H2(aq). This simple reaction was previously overlooked due to the assumption that all H must be bound by H2O molecules (i.e., no dissolved H), applicable to a pure H2O fluid, but not one with a solute load as addressed here. The application of thermodynamic modeling tools from aqueous geochemistry (DEW, EQ3/6) to mantle petrology predicts this reaction between mantle rock and slab fluid with our own experimentally constrained chemistry and fO2 (QFM+2). Mass transfer model results show an increase in Fe3(+)/Fe in mantle rock from MORB- like (0.15) to arc-like (0.20.3) values at reasonable fluid fluxes, co-incident with increasing H2 activity in the fluid. This can explain the stark correlation between slab fluid input into the mantle wedge and the observed fO2 of arc magmas. Moreover, it does not require diffusion of hydrogen out of the system. Instead, H2 remains dissolved in fluid in equilibrium with oxidized mantle rock

    A Single Circumbinary Disk in the HD 98800 Quadruple System

    Get PDF
    We present sub-arcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0.8'' (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 microns show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess upon which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 microns and longer, peaks at 25 microns, and has a best-fit black-body temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most-likely values of disk properties in the ranges considered are R_in = 5.0 +/- 2.5 AU, DeltaR = 13+/-8 AU, lambda_0 = 2(+4/-1.5) microns, gamma = 0+/-2.5, and sigma_total = 16+/-3 AU^2, where R_in is the inner radius, DeltaR is the radial extent of the disk, lambda_0 is the effective grain size, gamma is the radial power-law exponent of the optical depth, tau, and sigma_total is the total cross-section of the grains. The range of implied disk masses is 0.001--0.1 times that of the moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.Comment: 11 page Latex manuscript with 3 postscript figures. Accepted for publication in Astrophysical Journal Letters. Postscript version of complete paper also available at http://www.hep.upenn.edu/PORG/web/papers/koerner00a.p

    Posteruptive phenomena in coronal mass ejections and substorms: Indicators of a universal process?

    Get PDF
    [1] We examine phenomena associated with eruptions in the two different regimes of the solar corona and the terrestrial magnetosphere. We find striking similarities between the speeds of shrinking magnetic field lines in the corona and dipolarization fronts traversing the magnetosphere. We also examine the similarities between supra-arcade downflows observed during solar flares and bursty bulk flows seen in the magnetotail and find that these phenomena have remarkably similar speeds, velocity profiles, and size scales. Thus we show manifest similarities in the magnetic reconfiguration in response to the ejection of coronal mass ejections in the corona and the ejection of plasmoids in the magnetotail. The subsequent return of loops to a quasi-potential state in the corona and field dipolarization in the magnetotail are physical analogs and trigger similar phenomena such as downflows, which provides key insights into the underlying drivers of the plasma dynamics

    2,3-Dibromo-1,3-bis­(4-fluoro­phen­yl)propan-1-one

    Get PDF
    In the title compound, C15H10Br2F2O, the dihedral angle between the two 3-fluoro-substituted benzene rings is 5.7 (5)°. The two bromine substituents on the chalcone moiety are close to anti as the Br—C—C—Br torsion angle is 176.9 (7)°. Weak C—Br⋯π inter­actions may contribute to the crystal stability

    Geotail and LFM comparisons of plasma sheet climatology: 2. Flow variability

    Get PDF
    [1] We characterize the variability of central plasma sheet bulk flows with a 6-year Geotail data set and a 2-month Lyon-Fedder-Mobarry (LFM) global MHD simulation at two spatial resolutions. Comparing long databases of observed and simulated parameters enable rigorous statistical tests of the model\u27s ability to predict plasma sheet properties during routine driving conditions and represent a new method of global MHD validation. In this study, we use probability density functions (PDFs) to compare the statistics of plasma sheet velocities in the Geotail observations with those in the LFM simulations. We find that the low-resolution model grossly underestimates the occurrence of fast earthward and tailward flows. Increasing the simulation resolution inherently changes plasma sheet mass transport in the model, allowing the development of fast, bursty flows. These flows fill out the wings of the velocity distribution and bring the PDF into closer agreement with observations

    Food Quality and Phytoplankton Community Composition in San Francisco Bay using Imaging Spectroscopy Data from the California HyspIRI Airborne Campaign

    Get PDF
    The San Francisco Bay (SFB) is the largest estuary on the west coast of the United States. It is an important transition zone between marine, freshwater, and inland terrestrial watersheds. The SFB is an important region for the cycling of nutrients and pollutants and it supports nurseries of ecologically and commercially important fisheries, including some threatened species. Phytoplankton community structure influences food web dynamics, and the taxonomy of the phytoplankton may be more important in determining primary food quality than environmental factors. As such, estimating food quality from phytoplankton community composition can be a robust tool to understand trophic transfer of energy. Recent work explores phytoplankton food quality in SFB through the use of microscopy and phytoplankton chemotaxonomy to evaluate how changes in phytoplankton composition may have influenced the recent trophic collapse of pelagic fishes in the northern part of the SFB. The objective of this study is to determine if the approach can also be applied to imaging spectroscopy data in order to quantify phytoplankton food quality from space. Imaging spectroscopy data of SFB from the Airborne VisibleInfrared Imaging Spectrometer (AVIRIS) was collected during the Hyperspectral Infrared (HyspIRI) Airborne Campaign in California (2013 2015) and used in this study. Estimates of ocean chlorophyll and phytoplankton community structure were determined using standard ocean chlorophyll algorithms and the PHYtoplankton Detection with Optics (PHYDOTax) algorithms. These were validated using in situ observations of phytoplankton composition using microscopic cell counts and phytoplankton chemotaxonomy from the US Geological Surveys ship surveys of the SFB. The findings from this study may inform the use of future high spectral resolution satellite sensors with the spatial resolution appropriate for coastal systems (e.g., HyspIRI) to assess food quality from space

    Geotail and LFM comparisons of plasma sheet climatology: 1. Average values

    Get PDF
    [1] We compare the statistics of central plasma sheet properties from 6 years of Geotail observations with 2 months of Lyon-Fedder-Mobarry (LFM) global MHD simulations. This statistical validation effort represents an inherently new method of systematically characterizing and quantifying global MHD model performance. For our comparison, we identify the central plasma sheet in the observations and simulation by identical criteria and select the simulation interval to ensure statistically similar distributions of solar wind conditions in both studies. After verifying our plasma sheet selection by inspecting the magnetic signatures of both studies, we compare the resultant number densities, thermal pressures, thermal energies, and bulk flows as functions of position across the equatorial plane. We find that the LFM model successfully reproduces the gross features of the global plasma sheet in a statistical sense. However, our comparison also reveals certain systematic discrepancies between the model and the observations. The LFM predicts a plasma sheet which is too dense, too cool, and exhibits faster globally averaged bulk flows than the observed plasma sheet. By quantifying the LFM overestimate of ionospheric transpolar potential and showing that ΦPC correlates with plasma sheet flow speed, we demonstrate that 15% of the plasma sheet velocity discrepancy is reflected in a ΦPC overestimate. This statistical validation effort represents an essential first step toward the rigorous, quantitative evaluation of a global MHD model in the plasma sheet
    corecore