68 research outputs found

    Transcriptome analysis of antigenic variation in Plasmodium falciparum - var silencing is not dependent on antisense RNA

    Get PDF
    BACKGROUND: Plasmodium falciparum, the causative agent of the most severe form of malaria, undergoes antigenic variation through successive presentation of a family of antigens on the surface of parasitized erythrocytes. These antigens, known as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins, are subject to a mutually exclusive expression system, and are encoded by the multigene var family. The mechanism whereby inactive var genes are silenced is poorly understood. To investigate transcriptional features of this mechanism, we conducted a microarray analysis of parasites that were selected to express different var genes by adhesion to chondroitin sulfate A (CSA) or CD36. RESULTS: In addition to oligonucleotides for all predicted protein-coding genes, oligonucleotide probes specific to each known var gene of the FCR3 background were designed and added to the microarray, as well as tiled sense and antisense probes for a subset of var genes. In parasites selected for adhesion to CSA, one full-length var gene (var2csa) was strongly upregulated, as were sense RNA molecules emanating from the 3' end of a limited subset of other var genes. No global relationship between sense and antisense production of var genes was observed, but notably, some var genes had coincident high levels of both antisense and sense transcript. CONCLUSION: Mutually exclusive expression of PfEMP1 proteins results from transcriptional silencing of non-expressed var genes. The distribution of steady-state sense and antisense RNA at var loci are not consistent with a silencing mechanism based on antisense silencing of inactive var genes. Silencing of var loci is also associated with altered regulation of genes distal to var loci

    Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Translation of the genome sequence of <it>Plasmodium sp</it>. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of <it>P. falciparum </it>parasites exposed to antimalarial drugs.</p> <p>Results</p> <p>The rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole.</p> <p>Conclusion</p> <p>The high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.</p

    Genomic Content of Bordetella pertussis Clinical Isolates Circulating in Areas of Intensive Children Vaccination

    Get PDF
    BACKGROUND: The objective of the study was to analyse the evolution of Bordetella pertussis population and the influence of herd immunity in different areas of the world where newborns and infants are highly vaccinated. METHODOLOGY: The analysis was performed using DNA microarray on 15 isolates, PCR on 111 isolates as well as GS-FLX sequencing technology on 3 isolates and the B. pertussis reference strain, Tohama I. PRINCIPAL FINDINGS: Our analyses demonstrate that the current circulating isolates are continuing to lose genetic material as compared to isolates circulating during the pre-vaccine era whatever the area of the world considered. The lost genetic material does not seem to be important for virulence. Our study confirms that the use of whole cell vaccines has led to the control of isolates that were similar to vaccine strains. GS-FLX sequencing technology shows that current isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era and that the sequenced strain Tohama I is not representative of the isolates. Furthermore, this technology allowed us to observe that the number of Insertion Sequence elements contained in the genome of the isolates is temporally increasing or varying between isolates. CONCLUSIONS: B. pertussis adaptation to humans is still in progress by losing genetic material via Insertion Sequence elements. Furthermore, recent isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era. Herd immunity, following intensive vaccination of infants and children with whole cell vaccines, has controlled isolates similar to the vaccine strains without modifying significantly the virulence of the isolates. With the replacement of whole cell vaccines by subunit vaccines, containing only few bacterial antigens targeting the virulence of the bacterium, one could hypothesize the circulation of isolates expressing less or modified vaccine antigens

    Optimization of Topical Therapy for Leishmania major Localized Cutaneous Leishmaniasis Using a Reliable C57BL/6 Model

    Get PDF
    When initiating the cutaneous disease named cutaneous leishmaniasis (CL), Leishmania parasites develop within the parasitophorous vacuoles of phagocytes residing in and/or recruited to the dermis, a process leading to more or less chronic dermis and epidermis-damaging inflammatory processes. Topical treatment of CL could be a mainstay in its management. Any improvements of topicals, such as new vehicles and shorter optimal contact regimes, could facilitate their use as an ambulatory treatment. Recently, WR279396, a third-generation aminoglycoside ointment, was designed with the aim to provide stability and optimal bioavailability for the molecules expected to target intracellular Leishmania. Two endpoints were expected to be reached: i) accelerated clearance of the maximal number of parasites, and ii) accelerated and stable repair processes without scars. A mouse model of CL was designed: it relies on the intradermal inoculation of luciferase-expressing Leishmania, allowing for in vivo bioluminescence imaging of the parasite load fluctuation, which can then be quantified simultaneously with the onset and resolution of clinical signs. These quantitative readout assays, deployed in real time, provide robust methods to rapidly assess efficacy of drugs/compounds i) to screen treatment modalities and ii) allow standardized comparison of different therapeutic agents

    CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections

    Get PDF
    Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool

    Screening and Quantification of the Expression of Antibiotic Resistance Genes in Acinetobacter baumannii with a Microarray▿

    No full text
    An oligonucleotide-based DNA microarray was developed to evaluate expression of genes for efflux pumps in Acinetobacter baumannii and to detect acquired antibiotic resistance determinants. The microarray contained probes for 205 genes, including those for 47 efflux systems, 55 resistance determinants, and 35 housekeeping genes. The microarray was validated by comparative analysis of mutants overexpressing or deficient in the pumps relative to the parental strain. The performance of the microarray was also evaluated using in vitro single-step mutants obtained on various antibiotics. Overexpression, confirmed by quantitative reverse transcriptase PCR, of RND efflux pumps AdeABC, due to a G30D substitution in AdeS in a multidrug-resistant (MDR) strain obtained on gentamicin, and AdeIJK, in two mutants obtained on cefotaxime or tetracycline, was detected. A new efflux pump, AdeFGH, was found to be overexpressed in a mutant obtained on chloramphenicol. Study of MDR clinical isolates, including the AYE strain, whose entire sequence has been determined, indicated overexpression of AdeABC and of the chromosomally encoded cephalosporinase as well as the presence of several acquired resistance genes. The overexpressed and acquired determinants detected by the microarray could account for nearly the entire MDR phenotype of the isolates. The microarray is potentially useful for detection of resistance in A. baumannii and should allow detection of new efflux systems associated with antibiotic resistance

    Clinical metagenomics for the management of hospital- and healthcare-acquired pneumonia

    No full text
    The increasing burden of multidrug-resistant bacteria affects the management of several infections. In order to prescribe adequate antibiotics, clinicians facing severe infections such as hospital-acquired pneumonia (HAP) need to promptly identify the pathogens and know their antibiotic susceptibility profiles (AST), which with conventional microbiology currently requires 24 and 48 h, respectively. Clinical metagenomics, based on whole genome sequencing of clinical samples, could improve the diagnosis of HAP, however, many obstacles remain to be overcome, namely the turn-around time, the quantification of pathogens, the choice of antibiotic resistance determinants (ARDs), the inference of the AST from metagenomic data and the linkage between ARDs and their host. Here, we propose to tackle those issues in a bottom-up, clinically driven approach

    Human Tumor Necrosis Factor is a Chemoattractant for the Parasite Entamoeba histolytica

    No full text
    In an analysis of the molecular factors triggering amebiasis, we investigated the chemotaxis of Entamoeba histolytica toward tumor necrosis factor (TNF) in vitro, using quantitative imaging techniques. Our findings enabled us to propose a hitherto unknown role for TNF as a chemokinetic and chemoattractant agent for this parasite

    Legionella pneumophila sequence type 1/Paris pulsotype subtyping by spoligotyping.

    No full text
    International audienceEndemic strains of Legionella pneumophila sequence type 1 (ST1), in particular the ST1/Paris pulsotype, are dispersed worldwide and represent about 10% of culture-proven clinical cases of Legionnaires' disease in France. The high rate of isolation of this strain from both clinical and environmental samples makes identification of the source of infection difficult during epidemiological investigations. The full-length genome sequence of this strain was recently determined, and it revealed the presence of a CRISPR/cas complex. The aim of this study was to develop and evaluate a spoligotyping tool based on the diversity of this CRISPR locus that would allow the accurate subtyping of the L. pneumophila serogroup 1 ST1/Paris pulsotype. The CRISPR loci of 28 L. pneumophila ST1/Paris pulsotype isolates were sequenced, and 42 different spacers regions were characterized. A membrane-based spoligotyping method was developed and used to determine the subtypes of 406 L. pneumophila isolates, including 233 with the ST1/Paris pulsotype profile that were collected in France from 2000 to 2011. A total of 46 different spoligotypes were detected, and 41 of these were specifically identified in the ST1/Paris pulsotype isolates. In 27 of 33 epidemiological investigations, the environmental source of contamination was confirmed by comparing spoligotypes of clinical isolates with those of environmental isolates. With an index of discrimination of 79.72% (95% confidence interval, 75.82 to 83.63), spoligotyping of the L. pneumophila ST1/Paris pulsotype has the potential to be a useful complementary genotyping tool for discriminating isolates with undistinguishable pulsed-field gel electrophoresis (PFGE) and ST genotypes, which could help to identify environmental sources of infection
    • 

    corecore