11 research outputs found

    Viscosimetric determination of cellulase activity: critical analyses

    Get PDF
    The mode of expression of cellulase activity obtained by viscosimetric measurement is analysed. After testing different types of substrates, it appears that the best one is hydroxyethylcellulose used at a high degree of polymerisation and a high concentration. Comparison of results obtained with cellulases from Trichoderma viride and extracted from Pisum sativum favours the validity of the determination proposed. Possible physiological significance of the measurements of cellulase activity is also discusse

    Physicochemical space of synthetic and natural pesticides – a meta-analysis

    Get PDF
    The first commercial use of synthetic pesticides for crop protection dates back to the 1940s, followed by a fast spreading of their use and the development of a large number of compounds. In contrast to synthetic pesticides that are nowadays designed with the help of artificial intelligence that includes computational science and combinatorial chemistry, natural pesticides are the results of long evolutionary processes involving specific host-pathogens, predator-prey and competitor interactions. For these reasons, natural pesticides are often more specific and less harmful to the environment. Natural pesticides are very diverse and can be found in various living organisms. In the present study, we investigated differences in the physicochemical space occupied by synthetic and natural pesticides. In this respect, we measured the mean and breadth of synthetic and natural pesticides, as well as the overlap between these groups in a reduced physicochemical space derived from a set of 44 physicochemical variables. We showed that physicochemical space strongly differs between synthetic and natural pesticides and could be determined with 93-100% certainty, a result comparable to differences observed in drugs. Importantly, the physicochemical space occupied by synthetic pesticides was 2.6 fold smaller than the one of natural pesticides and toxicity potential was lower in the latter. In conclusion, our work showed that the design of commercialized synthetic pesticides is underexploiting the possible physicochemical space of known natural pesticides, likely due to specific constraints. Such limitations should trigger the development of efficient natural pesticides avoiding as much as possible detrimental effects on non-target organism

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Modification of the Health-Promoting Value of Potato Tubers Field Grown under Drought Stress: Emphasis on Dietary Antioxidant and Glycoalkaloid Contents in Five Native Andean Cultivars (Solanum tuberosum L.).

    No full text
    The effects of drought stress on dietary antioxidant and glycoalkaloid contents in potato tubers were investigated using a selection of five native Andean cultivars. Both freshly harvested and 4 month-stored tubers were analyzed. Responses to drought stress were highly cultivar-specific. The antioxidant contents of the yellow tuber-bearing cultivars (Sipancachi and SS-2613) were weakly affected by the drought treatment, whereas the pigmented cultivars demonstrated highly cultivar-dependent variations. A drastic reduction of anthocyanins and other polyphenols was revealed in the red- (Sullu) and purple-fleshed (Guincho Negra) cultivars, whereas an increase was shown in the purple-skinned and yellow-fleshed cultivar (Huata Colorada). The hydrophilic antioxidant capacity (evaluated by Folin-Ciocalteu and H-oxygen radical absorbance capacity assays) was highly correlated with the polyphenol content and followed, therefore, the same behavior upon drought. Carotenoid contents, including beta-carotene, as well as vitamin E, tended to increase or remain stable following drought exposure, except for the cultivar Sullu, in which the level of these lipophilic antioxidants was decreased. Vitamin C contents were not affected by drought with the exception of Guincho Negra, in which the level was increased. These variations of health-promoting compounds were associated with increased or stable levels of the toxic glycoalkaloids, alpha-solanine and alpha-chaconine. Storage at 10 degrees C for 4 months tended to decrease the concentrations of all dietary antioxidants, except those of vitamin E. This storage also reduced the drought-induced variations observed in freshly harvested tubers. These results were discussed in terms of their implications for human diet and health as well as in plant stress defense mechanisms

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    No full text
    48 pages, 29 figures, submitted for publication in Experimental AstronomyThe Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. It is expected that thanks to the studies conducted so far on X-IFU, along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained (abridged)

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    48 pages, 29 figures, submitted for publication in Experimental AstronomyThe Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. It is expected that thanks to the studies conducted so far on X-IFU, along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained (abridged)
    corecore