91 research outputs found

    Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel

    Get PDF
    F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF

    Influence of Maternal Obesity on Insulin Sensitivity and Secretion in Offspring

    Get PDF
    OBJECTIVE—The purpose of this study was to clarify the effects of maternal obesity on insulin sensitivity and secretion in offspring

    Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol

    Get PDF
    The presence of Fc-receptor-blocking factors in the sera of normal and insulin-dependent diabetic pregnant women was investigated by means of an antibody-dependent cell-mediated cytotoxicity assay. Sera from normal pregnant women induced a significant depression of antibody dependent cell-mediated cytotoxicity when compared with sera from normal and diabetic non-pregnant women (p less than 0.0001; p less than 0.002, respectively). The effect of sera from diabetic pregnant women, however, was not different from that observed with sera from normal and diabetic non-pregnant women. Thus, we confirm the presence of Fc-receptor-blocking factors in the sera of normal pregnant women. The higher cytotoxicity levels measured in the presence of sera from pregnant women with insulin-dependent diabetes suggests that the titres of such factors are reduced in this conditio

    Mutation of the Conserved Threonine 8 within the Human ARF Tumour Suppressor Protein Regulates Autophagy

    Get PDF
    Background: The ARF tumour suppressor plays a well-established role as a tumour suppressor, halting cell growth by both p53-dependent and independent pathways in several cellular stress response circuits. However, data collected in recent years challenged the traditional role of this protein as a tumour suppressor. Cancer cells expressing high ARF levels showed that its expression, far from being dispensable, is required to guarantee tumour cell survival. In particular, ARF can promote autophagy, a self-digestion pathway that helps cells cope with stressful growth conditions arising during both physiological and pathological processes. Methods: We previously showed that ARF is regulated through the activation of the protein kinase C (PKC)-dependent pathway and that an ARF phospho-mimetic mutant on the threonine residue 8, ARF-T8D, sustains cell proliferation in HeLa cells. We now explored the role of ARF phosphorylation in both basal and starvation-induced autophagy by analysing autophagic flux in cells transfected with either WT and ARF phosphorylation mutants by immunoblot and immunofluorescence. Results: Here, we show that endogenous ARF expression in HeLa cells is required for starvation-induced autophagy. Further, we provide evidence that the hyper-expression of ARF-T8D appears to inhibit autophagy in both HeLa and lung cancer cells H1299. This effect is due to the cells’ inability to elicit autophagosomes formation upon T8D expression. Conclusions: Our results lead to the hypothesis that ARF phosphorylation could be a mechanism through which the protein promotes or counteracts autophagy. Several observations underline how autophagy could serve a dual role in cancer progression, either protecting healthy cells from damage or aiding cancerous cells to survive. Our results indicate that ARF phosphorylation controls protein’s ability to promote or counteract autophagy, providing evidence of the dual role played by ARF in cancer progression

    Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1

    No full text
    The growth of Lactobacillus plantarum WCFS1 and of its δccpA ery mutant, WCFS1-2, was compared in batch fermentations in a complex medium at controlled pH (6.5) and temperature (30 °C) with or without aeration, in order to evaluate the effect of ccpA inactivation and aeration on growth, metabolism and stress resistance. Inactivation of ccpA and, to a lesser extent, aeration, significantly affected growth, expression of proteins related to pyruvate metabolism and stress, and tolerance to heat, oxidative and cold/starvation stresses. The specific growth rate of the mutant was ca. 60% of that of the wild type strain. Inactivation of ccpA and aerobic growth significantly affected yield and production of lactic and acetic acid. Stationary phase cells were more stress tolerant than exponential phase cells with little or no effect of inactivation of ccpA or aeration. On the other hand, for exponential phase cells inactivation of ccpA impaired both heat stress and cold/starvation stress, but increased oxidative stress tolerance. For both strains, aerobically grown cells were more tolerant of stresses. Evidence for entry in a viable but non-culturable status upon prolonged exposure to cold and starvation was found. Preliminary results of a differential proteomic study further confirmed the role of ccpA in the regulation of carbohydrate catabolism and class I stress response genes and allow to gain further insight on the role of this pleiotropic regulator in metabolism and stress. This is the first study in which the impact of aerobic growth on stress tolerance of L. plantarum is evaluated. Although aerobic cultivation in batch fermentations does not improve growth it does improve stress tolerance, and may have significant technological relevance for the preservation of starter and probiotic cultures. © 2012 Elsevier B.V
    corecore