5,486 research outputs found

    Do long-duration GRBs follow star formation?

    Get PDF
    We compare the luminosity function and rate inferred from the BATSE long bursts peak flux distribution with those inferred from the Swift peak flux distribution. We find that both the BATSE and the Swift peak fluxes can be fitted by the same luminosity function and the two samples are compatible with a population that follows the star formation rate. The estimated local long GRB rate (without beaming corrections) varies by a factor of five from 0.05 Gpc^(-3)yr^(-1) for a rate function that has a large fraction of high redshift bursts to 0.27 Gpc^(-3)yr^(-1) for a rate function that has many local ones. We then turn to compare the BeppoSax/HETE2 and the Swift observed redshift distributions and compare them with the predictions of the luminosity function found. We find that the discrepancy between the BeppoSax/HETE2 and Swift observed redshift distributions is only partially explained by the different thresholds of the detectors and it may indicate strong selection effects. After trying different forms of the star formation rate (SFR) we find that the observed Swift redshift distribution, with more observed high redshift bursts than expected, is inconsistent with a GRB rate that simply follows current models for the SFR. We show that this can be explained by GRB evolution beyond the SFR (more high redshift bursts). Alternatively this can also arise if the luminosity function evolves and earlier bursts were more luminous or if strong selection effects affect the redshift determination.Comment: 15 pages, 8 figures, accepted for publication in JCA

    GW170817: implications for the local kilonova rate and for surveys from ground-based facilities

    Get PDF
    We compute the local rate of events similar to GRB 170817A, which has been recently found to be associated with a kilonova (KN) outburst. Our analysis finds an observed rate of such events of RKN∼352−281+810_{KN}\sim 352^{+810}_{-281} Gpc−3^{-3}yr−1^{-1}. After comparing at their face values this density of sGRB outbursts with the much higher density of Binary Neutron Star (BNS) mergers of 1540−1220+3200^{+3200}_{-1220} Gpc−3^{-3}yr−1^{-1}, estimated by LIGO-Virgo collaboration, one can conclude, admittedly with large uncertainty that either only a minor fraction of BNS mergers produces sGRB/KN events or the sGRBs associated with BNS mergers are beamed and observable under viewing angles as large as θ\theta ≤\leq 40∘40^{\circ}. Finally we provide preliminary estimates of the number of sGRB/KN events detected by future surveys carried out with present/future ground-based/space facilities, such as LSST, VST, ZTF, SKA and THESEUS.Comment: MNRAS accepted, 6 pages, 1 figur

    IceCube Non-detection of GRBs: Constraints on the Fireball Properties

    Full text link
    The increasingly deep limit on the neutrino emission from gamma-ray bursts (GRBs) with IceCube observations has reached the level that could put useful constraints on the fireball properties. We first present a revised analytic calculation of the neutrino flux, which predicts a flux an order of magnitude lower than that obtained by the IceCube collaboration. For benchmark model parameters (e.g. the bulk Lorentz factor is \Gamma=10^{2.5}, the observed variability time for long GRBs is t_v=0.01 s and the ratio between the energy in accelerated protons and in radiation is \eta_p=10 for every burst) in the standard internal shock scenario, the predicted neutrino flux from 215 bursts during the period of the 40-string and 59-string configurations is found to be a factor of ~3 below the IceCube sensitivity. However, if we accept the recently found inherent relation between the bulk Lorentz factor and burst energy, the expected neutrino flux increases significantly and the spectral peak shifts to lower energy. In this case, the non-detection then implies that the baryon loading ratio should be \eta_p<10 if the variability time of long GRBs is fixed to t_v=0.01 s. Instead, if we relax the standard internal shock scenario but keep to assume \eta_p=10, the non-detection constrains the dissipation radius to be R>4x10^{12} cm assuming the same dissipation radius for every burst and benchmark parameters for fireballs. We also calculate the diffuse neutrino flux from GRBs for different luminosity functions existing in the literature. The expected flux exceeds the current IceCube limit for some luminosity functions, and thus the non-detection constrains \eta_p<10 in such cases when the variability time of long GRBs is fixed to t_v=0.01 s.Comment: Accepted by ApJ, 14 pages, 5 figures, typos corrected, scheduled for the June 10, 2012, v752 - 1 issu

    The variable X-ray light curve of GRB 050713A: the case of refreshed shocks

    Full text link
    We present a detailed study of the spectral and temporal properties of the X-ray and optical emission of GRB050713a up to 0.5 day after the main GRB event. The X-ray light curve exhibits large amplitude variations with several rebrightenings superposed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. Our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times. Our sparsely-sampled light curve of the optical afterglow can be fitted with a single power law without large flares. The optical decay index appears flatter than the X-ray one, especially at later times.Comment: few changes, to be published in A&

    Neutrinos From Individual Gamma-Ray Bursts in the BATSE Catalog

    Get PDF
    We calculate the neutrino emission from individual gamma-ray bursts observed by the BATSE detector on the Compton Gamma-Ray Observatory. Neutrinos are produced by photoproduction of pions when protons interact with photons in the region where the kinetic energy of the relativistic fireball is dissipated allowing the acceleration of electrons and protons. We also consider models where neutrinos are predominantly produced on the radiation surrounding the newly formed black hole. From the observed redshift and photon flux of each individual burst, we compute the neutrino flux in a variety of models based on the assumption that equal kinetic energy is dissipated into electrons and protons. Where not measured, the redshift is estimated by other methods. Unlike previous calculations of the universal diffuse neutrino flux produced by all gamma-ray bursts, the individual fluxes (compiled at http://www.arcetri.astro.it/~dafne/grb/) can be directly compared with coincident observations by the AMANDA telescope at the South Pole. Because of its large statistics, our predictions are likely to be representative for future observations with larger neutrino telescopes.Comment: 49 pages, 7 figures. Accepted for publication in Astroparticle Physic

    An Observational Limit on the Earliest GRBs

    Get PDF
    We predict the redshift of the first observable (i.e., in our past light cone) Gamma Ray Burst (GRB) and calculate the GRB-rate redshift distribution of the Population III stars at very early times (z=20-60). Using the last 2 years of data from Swift we place an upper limit on the efficiency (\eta_{GRB}) of GRB production per solar mass from the first generation of stars. We find that the first observable GRB is most likely to have formed at redshift 60. The observed rate of extremely high redshift GRBs (XRGs) is a subset of a group of 15 long GRBs per year, with no associated redshift and no optical afterglow counterparts, detected by Swift. Taking this maximal rate we get that \eta_{GRB}<1.1~10^{-4} GRBs per solar mass in stars. A more realistic evaluation, e.g., taking a subgroup of 5% of the total sample of Swift gives an upper limit of \eta_{GRB}<3.2~10^{-5} GRBs per solar mass.Comment: 6 Pages, 3 figures, submitted to MNRA

    Low-Luminosity Gamma-Ray Bursts as a Distinct GRB Population:A Firmer Case from Multiple Criteria Constraints

    Full text link
    The intriguing observations of Swift/BAT X-ray flash XRF 060218 and the BATSE-BeppoSAX gamma-ray burst GRB 980425, both with much lower luminosity and redshift compared to other observed bursts, naturally lead to the question of how these low-luminosity (LL) bursts are related to high-luminosity (HL) bursts. Incorporating the constraints from both the flux-limited samples observed with CGRO/BATSE and Swift/BAT and the redshift-known GRB sample, we investigate the luminosity function for both LL- and HL-GRBs through simulations. Our multiple criteria, including the log N - log P distributions from the flux-limited GRB sample, the redshift and luminosity distributions of the redshift-known sample, and the detection ratio of HL- and LL- GRBs with Swift/BAT, provide a set of stringent constraints to the luminosity function. Assuming that the GRB rate follows the star formation rate, our simulations show that a simple power law or a broken power law model of luminosity function fail to reproduce the observations, and a new component is required. This component can be modeled with a broken power, which is characterized by a sharp increase of the burst number at around L < 10^47 erg s^-1}. The lack of detection of moderate-luminosity GRBs at redshift ~0.3 indicates that this feature is not due to observational biases. The inferred local rate, rho_0, of LL-GRBs from our model is ~ 200 Gpc^-3 yr^-1 at ~ 10^47 erg s^-1, much larger than that of HL-GRBs. These results imply that LL-GRBs could be a separate GRB population from HL-GRBs. The recent discovery of a local X-ray transient 080109/SN 2008D would strengthen our conclusion, if the observed non-thermal emission has a similar origin as the prompt emission of most GRBs and XRFs.Comment: 22 pages, 9 figures, 3 tables; MNRAS, in press; Updated analysis and figure

    Wide Angle X-ray Sky Monitoring for Corroborating non-Electromagnetic Cosmic Transients

    Full text link
    Gravitational waves (GW) can be emitted from coalescing neutron star (NS) and black hole-neutron star (BH-NS) binaries, which are thought to be the sources of short hard gamma ray bursts (SHBs). The gamma ray fireballs seem to be beamed into a small solid angle and therefore only a fraction of detectable GW events is expected to be observationally coincident with SHBs. Similarly ultrahigh energy (UHE) neutrino signals associated with gamma ray bursts (GRBs) could fail to be corroborated by prompt gamma-ray emission if the latter is beamed in a narrower cone than the neutrinos. Alternative ways to corroborate non-electromagnetic signals from coalescing neutron stars are therefore all the more desirable. It is noted here that the extended X-ray tails (XRT) of SHBs are similar to X-ray flashes (XRFs), and that both can be attributed to an off-axis line of sight and thus span a larger solid angle than the hard emission. It is proposed that a higher fraction of detectable GW events may be coincident with XRF/XRT than with hard gamma-rays, thereby enhancing the possibility to detect it as a GW or neutrino source. Scattered gamma-rays, which may subtend a much larger solid angle that the primary gamma ray jet, are also candidates for corroborating non-electromagnetic signals.Comment: 13 pages, accepted for publication in Astrophysical Journal Letter

    The BATSE-Swift luminosity and redshift distributions of short-duration GRBs

    Full text link
    We compare the luminosity function and rate inferred from the BATSE short hard bursts (SHBs) peak flux distribution with the redshift and luminosity distributions of SHBs observed by Swift/HETE II. While the Swift/HETE II SHB sample is incompatible with SHB population that follows the star formation rate, it is compatible with a SHB rate that reflect a distribution of delay times after the SFR. This would be the case if SHBs are associated with binary neutron star mergers. The available data allows, however, different interpretations. For example, a population whose rate is independent of the redshift fits the data very well. The implied SHB rates that we find range from ∼8\sim 8 to ∼30h703\sim 30h_{70}^3Gpc−3^{-3}yr−1^{-1}. This is a much higher rate than what was previously estimated. A detailed (2 dimensional) look at the best fit models shows, however, some discrepancy between the four Swift/HETE II SHBs and the models based on BATSE SHBs. This could be a statistical fluke. It could also arise from wrong estimates of the triggering criteria or from selection effects. If real it may indicate the existence of two SHB populations with different luminosity functions and redshift distributions.Comment: Revised version includes additional bursts and revised redshift of older burst
    • …
    corecore