219 research outputs found

    One-photon absorption by inorganic perovskite nanocrystals: A theoretical study

    Full text link
    The one-photon absorption cross section of nanocrystals (NCs) of the inorganic perovskite CsPbBr3_{3} is studied theoretically using a multiband kp\mathbf{k}\cdot\mathbf{p} envelope-function model combined with a treatment of intercarrier correlation by many-body perturbation theory. A confined exciton is described first within the Hartree-Fock (HF) approximation, and correlation between the electron and hole is then included in leading order by computing the first-order vertex correction to the electron-photon interaction. The vertex correction is found to give an enhancement of the near-threshold absorption cross section by a factor of up to 4 relative to the HF (mean-field) value of the cross section, for NCs with an edge length L=9L=9-12 nm (regime of intermediate confinement). The vertex-correction enhancement factors are found to decrease with increasing exciton energy; the absorption cross section for photons of energy ω=3.1\omega=3.1 eV (about 0.7 eV above threshold) is enhanced by a factor of only 1.4-1.5 relative to the HF value. The kp\mathbf{k}\cdot\mathbf{p} corrections to the absorption cross section are also significant; they are found to increase the cross section at an energy ω=3.1\omega=3.1 eV by about 30% relative to the value found in the effective-mass approximation. The theoretical absorption cross section at ω=3.1\omega=3.1 eV, assuming a Kane parameter EP=20E_{P}=20 eV, is found to be intermediate among the set of measured values (which vary among themselves by nearly an order of magnitude) and to obey a power-law dependence σ(1)(ω)L2.9\sigma^{(1)}(\omega)\propto L^{2.9} on the NC edge length LL, in good agreement with experiment. The dominant contribution to the theoretical exponent 2.9 is shown to be the density of final-state excitons. The main theoretical uncertainty in these calculations is in the value of the Kane parameter EPE_{P}.Comment: 15 pages, 8 figure

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter

    Epistatic Interactions in the Arabinose Cis-Regulatory Element

    Get PDF
    Changes in gene expression are an important mode of evolution; however, the proximate mechanism of these changes is poorly understood. In particular, little is known about the effects of mutations within cis binding sites for transcription factors, or the nature of epistatic interactions between these mutations. Here, we tested the effects of single and double mutants in two cis binding sites involved in the transcriptional regulation of the Escherichia coli araBAD operon, a component of arabinose metabolism, using a synthetic system. This system decouples transcriptional control from any posttranslational effects on fitness, allowing a precise estimate of the effect of single and double mutations, and hence epistasis, on gene expression. We found that epistatic interactions between mutations in the araBAD cis-regulatory element are common, and that the predominant form of epistasis is negative. The magnitude of the interactions depended on whether the mutations are located in the same or in different operator sites. Importantly, these epistatic interactions were dependent on the presence of arabinose, a native inducer of the araBAD operon in vivo, with some interactions changing in sign (e.g., from negative to positive) in its presence. This study thus reveals that mutations in even relatively simple cis-regulatory elements interact in complex ways such that selection on the level of gene expression in one environment might perturb regulation in the other environment in an unpredictable and uncorrelated manner

    Simple Analytical Particle and Kinetic Energy Densities for a Dilute Fermionic Gas in a d-Dimensional Harmonic Trap

    Full text link
    We derive simple analytical expressions for the particle density ρ(r)\rho(r) and the kinetic energy density τ(r)\tau(r) for a system of noninteracting fermions in a dd-dimensional isotropic harmonic oscillator potential. We test the Thomas-Fermi (TF, or local-density) approximation for the functional relation τ[ρ]\tau[\rho] using the exact ρ(r)\rho(r) and show that it locally reproduces the exact kinetic energy density τ(r)\tau(r), {\it including the shell oscillations,} surprisingly well everywhere except near the classical turning point. For the special case of two dimensions (2D), we obtain the unexpected analytical result that the integral of τTF[ρ(r)]\tau_{TF}[\rho(r)] yields the {\it exact} total kinetic energy.Comment: 4 pages, 4 figures; corrected versio

    Some exact results for a trapped quantum gas at finite temperature

    Full text link
    We present closed analytical expressions for the particle and kinetic energy spatial densities at finite temperatures for a system of noninteracting fermions (bosons) trapped in a d-dimensional harmonic oscillator potential. For d=2 and 3, exact expressions for the N-particle densities are used to calculate perturbatively the temperature dependence of the splittings of the energy levels in a given shell due to a very weak interparticle interaction in a dilute Fermi gas. In two dimensions, we obtain analytically the surprising result that the |l|-degeneracy in a harmonic oscillator shell is not lifted in the lowest order even when the exact, rather than the Thomas-Fermi expression for the particle density is used. We also demonstrate rigorously (in two dimensions) the reduction of the exact zero-temperature fermionic expressions to the Thomas-Fermi form in the large-N limit.Comment: 14 pages, 4 figures include

    Optimizing Performance of Continuous-Time Stochastic Systems using Timeout Synthesis

    Full text link
    We consider parametric version of fixed-delay continuous-time Markov chains (or equivalently deterministic and stochastic Petri nets, DSPN) where fixed-delay transitions are specified by parameters, rather than concrete values. Our goal is to synthesize values of these parameters that, for a given cost function, minimise expected total cost incurred before reaching a given set of target states. We show that under mild assumptions, optimal values of parameters can be effectively approximated using translation to a Markov decision process (MDP) whose actions correspond to discretized values of these parameters

    Role of Fragment Higher Static Deformations in the Cold Binary Fission of 252^{252}Cf

    Get PDF
    We study the binary cold fission of 252^{252}Cf in the frame of a cluster model where the fragments are born to their respective ground states and interact via a double-folded potential with deformation effects taken into account up to multipolarity λ=4\lambda=4. The preformation factors were neglected. In the case when the fragments are assumed to be spherical or with ground state quadrupole deformation, the QQ-value principle dictates the occurence of a narrow region around the double magic 132^{132}Sn, like in the case of cluster radioactivity. When the hexadecupole deformation is turned on, an entire mass-region of cold fission in the range 138 - 156 for the heavy fragment arise, in agreement with the experimental observations. This fact suggests that in the above mentioned mass-region, contrary to the usual cluster radioactivity where the daughter nucleus is always a neutron/proton (or both) closed shell or nearly closed shell spherical nucleus, the clusterization mechanism seems to be strongly influenced by the hexadecupole deformations rather than the QQ-value.Comment: 10 pages, 12 figure

    HARD PHOTON PRODUCTION IN NUCLEUS-NUCLEUS COLLISIONS AT 30 MeV/u AND 44 MeV/u

    Get PDF
    Doubly differential cross-sections for Bremsstrahlung production have been measured in the reactions 40Ar + 197Au at 30 MeV/u and 86Kr +12C, AgNat and 197Au at 44 MeV/u. A qualitative analysis of the characteristics of the γ-ray emission suggests strongly that the initial proton-neutron collisions are the main source of nuclear Bremsstrahlung
    corecore