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Abstract: Static nuclear properties associated with a Skyrme-like force in the SkM parametrisation have
been extensively studied for both spherical and deformed nuclei through Hartree-Fock plus BCS
calculations. These calculations include in particular the determination of the s°°Pu fission barrier
up to the second saddle point . The validity of some currently used approximations to the
Hartree-Fock approach (self-consistent Strutinsky approach, expectation value method and two-
step iterative method) has also been assessed . The results of the microscopic calculations have
been systematically compared to the corresponding self-consistent results obtained within the
extended Thomas-Ferrai framework. Suchsemiclassical calculations also allow a proper characteri-
sation of the SkM force surface properties (in the liquid drop or droplet model sense) . Whereas
ground-state radii and multipole moments are found in excellent agreement with experimental
data, binding energies are systematically too high and fission barriers are significantly too low.
These two defects are shown to be correlated through the too low surface tension of the force .
A modified parametrisation is discussed which heals both these defects while keeping intact the
good reproduction of other properties . This constitutes a first step in the direction of current
efforts to determine a better parametrisation of Skyrme-like forces .

1. Introduction

Over the last ten years, Hartree-Fock (HF)+BCS calculations using phenomeno-
logical density-dependent effective forces like Skyrme or gaussian forces have been
found very satisfactory in reproducing static and low energy dynamical nuclear
properties [see e.g . ref. t )] . Oneof the most simple, yet very successful parametrisa-
tions is the one referred to as the Skyrme SIII effective force 2). It has appeared
increasingly clear, however, that the adjustment of this type of force still needs to
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be considerably improved in order to guarantee a better description of : (i) the
isovector electric dipole (E1) giant resonance, (ü) the isoscalar electric monopole
(EO) giant resonance, and (iii) actinide fission barrier heights. Incidentally, one
would also like to control singlet-even properties of the force in order to secure
correct ( T= 1) pairing matrix elements . A Skyrme force called SkM fulfilling the
requirements (i) and (ü) has been recently proposed 3). As a part of the general
project of finding a better parametrisation of Skyrme forces, it is one aim of this
paper to study the actinide fission barrier heights [requirement (iii)] as obtained
with the SkM force. In what follows we will not discuss the pairing properties of
the SkM force which would probably be inadequate since they have not entered
the fitting procedure in any direct way.

Before studying the static fission barriers obtained with the SkM force, one
should first investigate in some detail its static ground-state properties. Since the
authors of ref. s) have mainly based their fit on nuclear matter saturation properties
and on giant EO and E1 modes, it remains necessary therefore to calculate both
spherical anddeformed finite nuclei within theHF framework [including an approxi-
mate treatment of pairing correlations as described in ref. a)] .
The self-consistent calculations for deformed nuclei are lengthy and costly. How

time consuming they are, depends on the imposed symmetries . The calculation of
spherically symmetric solutions is very fast . Axially symmetric solutions, usually
obtained through a truncated basis expansion (which appears to be the only
reasonable procedure for heavy nuclei so far), require a considerable amount of
computing time essentially because of the necessity of correctly minimising the
energy with respect to the basis parameters . Releasing the left-right symmetry
would increase slightly the numerical efFort, whereas it is almost impossible in the
present state of the art to think of systematic, fully self-consistent calculations for
heavy nuclei releasing the axial symmetry . It is therefore necessary, particularly in
view of making a fit of effective forces, to develop handy yet secure approximation
schemes. This aspect of the problem will be thoroughly studied in the present work .
Three approximations will be considered in this paper: (i) the standard shell

correction method s-' °) in its self-consistent version ".'2), (ü) the expectation value
method' s'' a), and (iii) the two step iterative method' s-") . These approximations
have already been tested for the SIII Skyrme force'2''a''6) . We will extend here
these studies to the SkM force. The use of self-consistent semiclassical densities
(either in the framework of the partial ~ resummation method' s-2° ) or in the
extended Thomas-Fermi (ETF) model 2l-za) would improve considerably the
accuracy of the above-listed approximations . This is whywe will also present some
results of semiclassical calculations with the SkM force in the ETF approach .
The paper will be organised as follows : In sect . 2 we will present saturation,

surface and symmetry properties of the SkM force for infinite nuclear matter and
using spherically symmetric HF results for magic nuclei . Sect . 3 will be devoted to
the study of deformation properties of this force (including the za°Pu fission barrier) .
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Finally we will conclude in sect . 4, putting the present study in the more general
perspective of finding a satisfactory Skyrme force parametrisation by indicating a
possible way of improving the surface properties of the SkM force.

2. Saturation, surface and symmetry properties of spherical nuclei

The SkM force parameters have been adjusted in such a way as to yield correct
saturation properties in infinite isoscalar nuclear matter . The incompressibility K~
as well as the symmetry and surface properties have been taken care of by requiring
a fair reproduction of isoscalar E0, isovector EO and isovector E1 giant resonance
properties in a fluid dynamical lagrangian approach . In this section we will recall
briefly the infinite nuclear matter properties of the SkM force, discuss its symmetry
andsurface properties and present some HF results for spherically symmetric finite
nuclei calculated with this force.
For the most general central Skyrme force [with the notation of e.g . ref. zs)]

v~ �~e, (r,, rz) = to(1 +xoPQ)S (r) +t,(1+x1PQ)[S(r)k z +k'zS(r)]

+tz(1+xzPQ)k'S(r)k+t3(1+x3Pv)p°(R)S(r) (1)

the binding energy per particle (E/A), the incompressibility (K~) and the volume
symmetry energy (J) are expressed as (with ß =s(2?rz)z/3) :
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in terms of the isoscalar density p=p�+pv determined by the saturation condition
a/ap (E/A) = 0. The effective mass m* in isoscalar nuclear matter is given by

The SkM values of E/A, K~, J, p and m*/m are listed in table 1 where they are
compared with those obtained with the SIII force 2). Whereas the two forces lead
to almost identical saturation energies, the SkM force yields significantly more
compact nuclear matter (i .e ., a larger equilibrium density) than the SIII force, which
is favourable since SIII systematically overestimates charge radii in both spherical
and deformed nuclei [see table 5 of ref. ')]. The incompressibility which was bound
to be at least of the order of 300 MeV with linearly density-dependent effective
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forces z) is fixed for the SkM force to a value consistent with experimental isoscalar
EO giant resonance data ze), as discussed in ref. z') . The symmetry volume
coefficients J are roughly comparable for the two forces . They are smaller by ~30%
than the values obtained within Brückner and local density approximation calcula-
tions ze) and those deduced from the more recent droplet model fits to binding
energies z9)

.

The surface properties of a force may be characterised by the parameters as, Ks
in an extended liquid drop model fit of average binding energies É of given nuclei
(N, Z) to the expression :

z
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(6)

where av= E/A and avtcv= J, the dots representing possible lower-order terms
(e.g . a curvature term proportional to Ati3) . Of course, it would make no sense to
fit eq . (6) to the exact HF binding energies due to the presence of shell effects.
However, in a semiclassical model [like the ETF energy density method which was
recently developed zs .za) using Skyrme forces] the average part of the binding
energy is obtained and can be fitted to eq . (6). In this respect let us note that in
order to get unique values for as and Ks, curvature and constant terms must be
included in the least-square fit procedure and values of A up to X5000 must be
taken into account sz)

. The resulting values of as, Ks are given in table 1. When
comparing the results obtained with the SIII and SkM forces, it appears that for
the SkM force, both isoscalar and isovector contributions lead to a decrease of the
surface tension compared with the SIII force. For za°Pu, for instance, the effective
surface tension as[1-KS({N-Z}/A)z] is decreased by ~16% .Since one expects
from the values of p in table 1 an increase in radii of ~3%,one deduces that the
fissility parameter for za°Pu will be increased by 13% thus leading to a significant
reduction of the fission barrier. This is indeed the case, as will be shown in sect . 3.

TABLE 1

Infinite nuclear matter and surface properties of the SIII, SkMand modified
SkM forces ; see text for the notation

The surface parameters have been determined from the calculated semi-
classical (ETA binding energies [see also ref. sz), especially for the parameter
Ks]. The modified SkMforce (last column) is discussed in sect . 4.

SIII SkM SkM (modified)

E/A (MeV) -15.86 -15 .78 -15.78
Km(MeV) 355.4 216.7 216.7
m*/m 0.76 0.79 0.79
1 (MeV) 28.16 30.75 30.03
p (fm-3 ) 0.1453 0.1603 0.1603
as (MeV) 18.13 16.85 17.51
Ks 1 .84 3 .60 3.74
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A systematic way of determining the coefficients of eq . (6) other than by a
least-square fit is to make use of the leptodermous expansion 3°). This approach
has recently been revisited in particular for Skyrme forces st .s2)t. The surface
coefficients as and tcs can be exactly obtained from semi-infinite (asymmetric)
nuclear matter calculations . The lower order coefficients, however, can be correctly
obtained only from a leptodermous expansion for finite nuclei, due to the nontrivial
N- and Z-dependence of the nucleon densities inside the nucleus sz). Care has to
be taken also of the self-consistency effect of the Coulomb interaction on the
nuclear energy in eq . (6). It canbe accounted for by an explicit "Coulomb redistribu-
tion energy" term CZZzA'~3 (+ lower-order terms) as in the droplet model s°), if
the coefficient CZ is suitably adjusted . If no such term is added to eq . (6), the
coefficients as, tcs, . . . have to be appreciably changed. (The surface energy, as, for
instance would have to be increased by approximately 1 MeV.) For a more explicit
discussion of the leptodermous expansion obtained within the ETF energy density
method and, in particular, a detailed comparison with the droplet model, we refer
to ref. ss) .

Let us now turn to finite nuclei . For nine shell or sub-shell closed nuclei ( '60,
aoCa, 48Ca, S6Ni, 9°Zr, t '4Sn, '32Sn, laoCe, 2°gPb) we have obtained spherically
symmetric HF solutions, using the numerical procedure (and code) discussed in
ref.33 ). Pairing correlations (with constant matrix element G) were included in the
standard approximate BCS way 4) . (Non zero gaps d � or dP were obtained for the
nuclei 9°Zr, "4Sn,

to°
Ce.) A Coulomb exchange contribution in the Slater approxi-

mation has been included as well as the one-body part of the standard centre-of-mass
correlation (i .e . -T/A,where Tis the kinetic energy). Theresulting binding energies
are displayed in table 2. They are in reasonable agreement with experimental
data 3a), however the fit is not as good as the one obtained with the SIII force. In
fact, the SkM force leads to a systematic overbinding. One might suspect that this
feature could be due to the inclusion of the Slater-approximated Coulomb exchange
energy or of the one-body c.m . correcting term. However, the variation with A of
both corrections is inconsistent with the observed binding energy excess as shown
in fig . 1 . As a matter of fact, the deficiency can be traced back to a surface effect
corresponding to an underestimation of the surface tension parameterasby roughly
~-0.6 MeV.

In table 2 we have also reported the ETF binding energies . As already found
with other forces za), this approach leads for the SkM force to a slight overbinding
(-~-5-10 MeV for heavy nuclei when a proper shell correction energy is added) .
Charge radii obtained in both HF and ETF calculations are compared with

experimental data in table 3. The HF densities pv(r) corresponding to point-like
particles have been convoluted with a proton form factor to yield the charge

Note that ref . s') contains some numerical errors which are corrected in ref. 3z).
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Experimental (B"~, Hartree-Fork (BHF) and extended Thomas-
Fenmi (BErF) binding energies (in MeV)

The nuclei marked by a star are deformed in their ground states .
For a discussion of the HF calculation for the latter nuclei, see below
in the text and table 6. All other nuclei have been assumed to be
spherically symmetric. Pairing correlations havebeen included mBHF
for protons in 9° Zr (dP =1.7 MeV) and IaoCe (d p =1.9 MeV), for
neutrons in "aSn (d �=2.0 MeV) .

1. Bartel et al. / Skyrme-like effective forces

TABLE 2

50 700 150 200 A

Fig. 1. Binding energy excess dB, as obtained with the SkM force for various spherical and deformed
nuclei calculated within the Hartree-Fock plus BCS approach . For Ca and Sn nuclei, the straight lines
suggest the isotopic structure of this excess . The results of a least square fit of dB to aA z~3 (namely
with a=~,(A;~3dB,)/E,Aa~s) are also plotted as a solid (dashed) line when including deformed and
spherical (only spherical) nuclei. For the sake of comparison, the variation with the nuclear number A
of the one-body c.m . correction and approximate Slater Coulomb exchange energies are also displayed

at the top of the figure.

B"° B~ BEI'F

16O 127.6 131.5 130.1
ao~ 342.1 347.9 351.4
48~ 416.0 428.1 427.7
st~i 484.0 495.1 490.8
9°Zr 783.9 796.6 796.5
1 lasn 971 .6 982.6 987.1
Iszsn 1102 .7 1123 .7 1111 .1IaoCe 1172 .7 1188 .0 1186 .0
I~ErI*~ 1351 .6 1362 .9zoePb 1636 .5 1652 .7 1639 .7
zaoPu~*1 1813 .5 1822 .5
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T.4sr_.E 3
Comparison of experimental rms charge radii r~ x° (in fm) with various theoretical extimates

The HF' values r~ include the effect df a proton charge form factor . For some nuclei these values
have been further corrected for c.m ., electromagnetic spin-orbit and neutron charge form factor effects,
yielding the values r~. The HF neutronßroton rms radius difference (r° -rD)HF is listed. Both r~ and
(r° -rP) are also given in the ETF approximation . We give the diffuseness parameters ao, «p and the
central densities pc and p°=per+pp of the semiclassical ETF neutron (n) and proton (p) densities
(parametrised as Fermi functions) . The starred experimental radius (' °° Ce) corresponds to natural
cerium çontaining 88.5% of' 4°Ce .

distribution . For some nuclei the HF values have been corrected for the spurious
c.m . motion ss) by :

l .lfmdr =- A

For the same nuclei we have also included the correction for the electromagnetic
spin-orbit and neutron charge distribution effects se), evaluated ") for the same
nuclei and with similar forces . As a general result one finds that the agreement
between e

	

erimental a7 sexp

	

' ) and theoretical rms radii is very good and, in fact, far
better than what was obtained with the SIII force 2). It is, in particular, gratifying
to see that the anomalous a°Ca-'eCa isotopic shift is qualitatively well reproduced,
which was hardly the case for usual Skyrme forces, except for those (Ska, Skb)
fitted by Köhler 39)

. The charge radii obtained in the ETF calculations reproduce
very well the (uncorrected) HF results except when well-marked shell effects are
present, such as in the calcium isotopes . The differences between neutron and
proton rms radii (for point-like nucleons) are also listed in table 3. The ETFresults
almost exactly reproduce the HF differences . From theETFdensities (parametrised
as Fermi functions) one can study the variation of the central densities p~, pv and
diffuseness parameters «� , aP as functions of A. Note that isotopic effects are rather
important for the neutron diffuseness parameter a� , whereas the proton diffuseness
aP stays roughly constant, as already found in refs . z° .so) .

The proton and neutron single-particle energy spectra for the spherical nuclei
9°Zr and z°8Pb are shown in figs . 2 and 3. They agree qualitatively well with the

r~xv rx~c rHS re~ (rn - rn)HF (rR -ro)~ «~ «P Pv P°

'60 2.73 2.71 2.79 2.75 -0.03 -0.02 0.440 0.444 0.0811 0.1641soCa 3.49 3.46 3.50 3.45 -0.04 -0.04 0.450 0.458 0.0801 0.1629
°BCa 3.48 3.46 3.52 3.52 0.16 0.17 0.490 0.433 0.0716 0.1627
s6Ni 3.75 3.75 3.79 -0.05 -0.05 0.454 0.463 0.0790 0.1612
9°Zr 4.27 4.24 4.28 4.27 0.06 0.08 0.481 0.445 0.0717 0.1588
"~Sn 4.58 4.59 0.10 0.08 0.485 0.444 0.0699 0.1568
'3ZSn 4.71 4.73 0.24 0.25 0.530 0.430 0.0627 0.1555
'°°Ce 4.88* 4.88 4.87 0.12 0.14 0.501 0.437 0.0662 0.1551
2°8Pb 5.50 5.47 5.49 5.52 0.18 0.17 0.518 0.432 0.0616 0.1510
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Fig. 2. Neutron and proton single-particle energies in the 9°Zr nucleus . Experimental energies have
been taken from the compilation of ref . 33). Pairing correlations have been included for protons

(leading to dp =1.7 MeV) .

displayed experimental data. One notes however a significant decompression of
the HF spectra as compared with the experimental ones . Such an effect, which is
only apparent for medium heavy and heavy nuclei, is well explained in terms of
the interplay between single-particle motion and low-lying collective vibrations
[see e.g . the discussion in ref. ')]. It will be further discussed in subsect. 3.2 when
presenting single-particle spectra of deformed nuclei .

3. Deformation and fission properties

3.1 . HARTREE-FOCK+BCS CALCULATIONS WTTH AN EXTERNAL CONSTRAINT

To calculate nuclear deformation energy surfaces, the constrained Hartree-Fock
equations are solved by expanding the single-particle wave functions onto eigen-
states of an axially symmetrical harmonic oscillator a.at) . Special attention has to
be paid to the convergence of the necessarily truncated expansion `z) and to the
best choice of the oscillator parameters at each deformation. The latter is imposed
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Fig. 3. Same es fig . 2 for the 2°sl?b nucleus.

by adding external constraints on one or several multipole moments to the HF
hamiltonian [see ref. a2) for an extensive study] . In the calculations reported here
we will only consider a quadrupole constraint .

Pairing correlations should in principle be included through a Hartree-Fock-
Bogoliubov (HFB) approach . It has been shown °s), however, that for static proper-
ties a self-consistent HF+BCS method is a very accurate approximation to the full
HFB treatment. In our calculations we have, for the sake of simplicity, included
pairing correlations in an approximate HF+BCS scheme [as formulated e.g . in
ref. 4)] using a constant antisymmetrised pairing matrix element

Grl=(i~~v~11) = -G .

Since G is not directly known empirically, rather than taking G as a parameter
we use the "uniform gap method" proposed in ref. 6). At each deformation the
value of G is fixed by imposing the average pairing gap d empirically known to
vary as d'~ 12 MeV/./A. Solving the BCS equations with the corresponding G,
one obtains pairing gaps do and dp in good agreement with the experimentally
observed odd-even mass differences for all nuclei under consideration .
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3.2 . GROUND-STATE DEFORMATION PROPERTIES

In this subsection we will briefly present some calculated ground-state properties
of two well-deformed nuclei, namely t66Er as a representative of the rare earth
nuclei and za°Pu as a typical actinide nucleus. Charge quadrupole, hexadecapole
moments and rms radii of i6eEr calculated with the SkM force, are listed in table
4 to ether with available ex erimental data as asg

	

p

	

' ). They are also compared with
the results obtained using the Skyrme interaction SIII [ref . ae)] and Gogny's D1
force a'), or those obtained ae) within the density matrix expansion approach a9 .so) .

TABLE 4
Comparison of charge rms radii, quadrupole and hexadecapole moments of 1~Er, obtained in self
consistent Hartree-Fock (present work) and shell-correction calculations sass) with experimental data,

`) : ref . aa), b) : ref . as)

A similar comparison is made in table 5 for the ground and fission isomeric states
of za°Pu [see refs . st-ss) for relevant experimental data]. For both nuclei we give
also in tables 4, 5 the results of Strutinsky shell-correction calculations using various
phenomenological single-particle potentials s.sa-s') . It can be concluded that the
SkM force yields moments which are in very good agreement with experimental
data, this agreement being generally better than what was obtained with other
forces (and comparable to the best phenomenological results) .

TABLE S
Same as table 4 for Za°Pu both in ground (g .s .) and fission isomeric state (f .i.s .)

Experimental results are extracted from °) : ref . si), ~: ref. s2) and ~: ref . s3) ; results of shell-correction
calculations are from refs . ss-s~) .

In table 6 the binding energies of the '66Er and za°Pu nuclei are compared with
experimental data sa) . They have been corrected as usual') for truncation effects
due to the expansion on a finite oscillator basis, for one-body c.m . motion effects
and for spurious rotational energies . For the latter correction, we have taken the
values obtained in ref. ss) with the SIII force, i.e . with usual notation (JZ)/2.~ = 2.44

Exp SkM SIII DME D1 Ref. sa) Ref. ss)

r`(fm) 5 .238 °) 5 .246 5.331 5.262
Qi (b) 7.63 f 0.03 b) 7 .68 7.79 7.78 7.60 7 .26 7.08

Qa(bz)
f0.22+o.ii b
I0 .30`)~ 16 ) 0.24 0.33 0.28 0.27 0.31

Exp Skm SIII Ref. ss) Ref. se) Ref. s')

r`(fm) 5 .886 5,952
Qz°~(b) 11 .S8f0.08 °) 11 .9 11,1 11 .9 10 .3 11 .3
Q;'. (b~) 1.15 f 0.28 b) 1 .2 1.1 1.1 1 .0 1 .4
Q2{.`(b) 36t4`) 34.0 32 .7 38 .2



EHF+RCS dEtrunc

tesEr -1357.9 -2 .6 -2.4 -1362.9 -1351 .E
z°°Pu -1817.4 -3.3 -1 .9 -1822,6 -1813.5
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(Mev>
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TABLE 6
Ground state energies (in MeV) calculated with the SkM force

Before comparing the HF+BCS energies (E,~+acs) to experimental energies [
n ) :

ref. sa)], we have subtracted truncation (GEtrunc ) and spurious rotation (dE~) energies
to yield corrected calculated values (E~�e~tea ) . The truncation correction, assumed to be
deformation independent and corresponding to 11 shells (13 shells) for t~Er (z~°Pu), has
been evaluated for spherically symmetric nuclei . The spurious rotation energy has been
taken from the evaluation made in ') : ref . ss) for the SIII force. Note that the truncation
error is significantly smaller with the SkM force than was the case for the SIII force which
might be due to the different values of the incompressibility .
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Fig. 4. Neutron single-particle energies corresponding to the equilibrium deformed mean field obtained
for t`~Er with the SIII and SkM forces . Levels are labelled by their .(1' values (with usual notation) .
Modified harmonic oscillator (MHO) estimates s9) are also plotted, using the standard scaling Am =
41A -ti3 MeV and choosing the MHO energy origin by matching some MHO and SkM levels located
near the Fermi sea surface (here a z_ level) . The Fermi energies obtained in self-consistent calculations

are represented as dashed lines .
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modified harmonic oscillator (MHO) sv) estimates are given.
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(1 .89) MeV for tseEr (2aoPu). For these nuclei, as was the case for spherical nuclei
(see sect . 2), the SkM force leads to a slight overbinding as shown in fig . 1 .
The question arises whether the HF+BCS scheme is also capable of giving the

right deformation behaviour of single-particle energies . We display in figs . 4-7 the
self-consistent neutron and proton single-particle level spectra in the ground states
of t66Er and za°Pu obtained with SkM and SIII forces . They are compared with
the single-particle level schemes given by the Nilsson model s9) and by the folded
Yukawa potential approach of Möller, Nilsson and Nix s6)

. The spectra obtained
with the two different Skyrme forces in the HF+BCS approximation are rather
similar. Moreover, they agree in all cases fairly well with the spectra of phenomeno-
logical shell-model potentials . For t66Er, and to a lesser extent for za°Pu, one notices
an almost complete disappearance of the decompression in the HF spherical spectra
(with respect to experimental data) noted in sect . 2. This has been already discussed
for the SIII force in ref. 1 ) . It is related to the coupling of individual degrees of
freedom to low-lying collective vibrations which turns out to be more important
in spherical than in deformed nuclei . The relevant parameter for the single-particle
level density near the Fermi energy is the nuclear matter effective mass m* which
is comparable for both SIII and SkM forces (0.76 and 0.79, in nucleonic mass units,
see table 1) . It is therefore not surprising that the SkM force yields also a correct
level density. The more detailed agreement of deformed single-particle energies
with phenomenologically adjusted spectra is indeed more significant . It partly
reflects the adequacy of the spin-orbit force strength . An even more stringent test
of the deformation behaviour of single-particle energies is provided by spectroscopic

J. Bartel et al. l Skyrme-like effective forces
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properties of odd nuclei fission isomeric states . For the Z39Pu nucleus the latter
have been studied in ref. 6°) in the rotor-plus-one quasiparticle model. The correct
location of the z_ and the neighbouring z+ single-particle states obtained with the
SIII force within this approach has been found essential for obtaining a very nice
agreement with the observed states of the corresponding rotational bands. It has
been found that the SkMneutron spectrum is indeed very close to what wasobtained
with SIII andwe expect therefore the SkMforce to yield similarly good spectroscopic
properties for those very exotic nuclear states.

3 .3 . THE za°Pu FISSION BARRIER

Self-consistent calculations of actinide fission barriers were performed in 1973
by the Orsay group 61 "62) using the SIII Skyrme force in the HF+BCS approach .
The important qualitative features of experimentally observed fission barriers were
reproduced by these calculations : existence of a double-humped fission barrier and
correct deformation properties of both ground and fission isomeric states . However,
even after applying various corrections due to truncation effects, to spurious
translational and rotational energies and to the undue imposition of axial and
left-right reflexion symmetries, the fission barrier heights were found significantly
too highs.

Shortly after these calculations, rather similar results have been obtained ba)

within the closely related phenomenological K-matrix approach . Full Hartree-
Fock-Bogoliubov calculations bs) have been achieved in 1979 making use of the
gaussian effective interaction D1 due to Gogny as). Againthese calculations yielded
too high fission barriers . At this point the question arose quite naturally why all
effective forces, which have been found very satisfactory for nuclear ground-state
properties, led consistently to bad results when extrapolated to the large deforma-
tions occurring at the fission barriers [see e.g . ref.

bs
)] . Was this failure linked to

some basic deficiency of the effective forces in use or to the Hartree-Fock approach
(or to both)? Obviously, in the case of a failure of the interactions in use, one
should make sure that one has fully exploited all the available freedom in choosing
the force parameters .

Recently, two independent calculations l' .za) using some approximate methods
discussed below, showed that the SkM force should lead to a considerably lower
fission barrier than was obtained before in Hartree-Fock calculations . The semi-
classical results of ref. za) demonstrated that all the linearly density-dependent

' This holds if one assumes that the pairing matrix element G remains constant as a function of the
deformation . Indeed, in the calculation of refs . b' .ea) pairing correlations havebeen includedbyarbitrarily
imposing a pairing gap either constant or varying proportionally to the nuclear surface. A constant G
prescription has been later justified by the Hartree-Fock-Bogoliubov results of ref . es) . Such a prescrip-
tion turns out to be roughly consistent with the uniformgap method used in the self-consistent calculations
of the Z4°Pu fission barrier performed in ref.' °) .
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Fig. 8 . Self-consistentmicroscopic 2°°Pu fission barrier (E~) calculated with the SkM force as afunction
of the quadrupole moment (Q) of the mass distribution . The self-consistently Strutinsky-averaged
energy (~`), the corresponding first-order shell corrected energy (É+S 1E) and the self-consistent
extended Thomas-Ferrai energy (E~) are also plotted (see fig . 10 caption) . The latter has been
adjusted to the spherical average energy Ë. The self-consistent energies (E~ and L~) calculated at the
second fission saddle point have been lowered by 2 MeV as indicated by the arrows to roughly take
into account truncation energy effects which become important at such deformations . The circled cross

indicates the empirical LDM saddle point 6) .

Skyrme forces (SIII-SVI) proposed in ref. z) lead to almost identical average
barriers. Such indications gave us further motivation for calculating with the SkM
force the z4°Pu deformation energy curve displayed in fig . 8. One immediately
notices that the second barrier height whichwas found at about 20 MeVin previous
calculations is now reduced by a factor of two. Applying the same corrections as
mentioned before, the bamer will end up by several MeV too low, as compared
with experimental data.

In what follows we will compare quantitatively the results of our self-consistent
calculations to those obtained with two approximate methodswhich will be presen-
ted below in some detail.

3.4 . APPROXIMATE METHODS FOR DEFORMATION ENERGIES

The approach used by Dutta and Kohno l') to calculate the z°°Pu fission barrier
has been proposed by Bhaduri et al. 15) for spherically symmetric nuclei . It has
been further extended to deformed nuclei in ref. tb)

. This method approximates
the result of theHF iterative process merely from the first two iterations by assuming
that

where T is the kinetic energy operator . Starting from an ansatz for the mean field,
one obtains the density p~ l~ from which the HF hamiltonian T+ V(pa~) is construc-
ted with the eigensolution pcz~ .
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Fig . 9 . Self-consistent Z°°Pu fission barrier as compared with the expectation value method (EVM) and
two-step iterative method (TSIM) estimates .

This "two-step iterative method" (TSIM), which has been shown numerically to
give remarkable results for spherical and weakly deformed nuclei, turned out to
fail for very large deformations as already noted in ref . 16). Indeed it underestimates
the self-consistent SkM second fission barrier by about a factor of two as shown
in fig. 9, where we have plotted the TSIIVI estimate l') for the Z4°Pu fission barrier
calculated with the SkM force. One could object that the incorrect deformation
energy behaviour obtained in ref. t') might be due to the special choice made there
of a constant pairing gapd =d =12/./A MeV. We have checked that this is not the
case by performing a full HF+BCS calculation using d=d, which turned out, in
this case, not to change significantly the deformation energies .
The "expectation value method" (EVM)has been used as an alternative approach

for determining self-consistent deformation energy surfaces'3 "'a,bb.b ') . It consists
in using the Slater determinant ~h~,,rs associated with a reasonable ansatz for the
deformed mean field (e .g . Woods-Saxon potential) to calculate the expectation
value of the total Skyrme hamiltonian

EEVM=~~ws(ßt)~T+vsk,,ro,~~~ws~~)) "
In eq . (7) fiws depends on one or several deformation parameters ß; and asr,,rme
is the Skyrme two-body force. The Slater determinant ~ws is built with single-
particle wave functions which are eigenstates of the one-body hamiltonian

which includes an effective mass and a spin-orbit term . In our case the distributions
VQ(r), m/mq (r) and SQ(r) are Ferrai-type functions fitted to the corresponding
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results of a spherical HF calculation . These functions are deformed using a para-
metrisation used in Strutinsky calculations 6), whose validity for estimating relative
energies when using the Skyrme SIII force has been demonstrated in refs. ta .bb) .

We have done similar calculations with the SkM force to calculate the fission barrier
of Z4°Pu . As can be seen in fig . 9 the constrained HF+BCS curve is reproduced
for all deformations to within 1-2 MeVwhereas the two-step iterative method fails
for deformations beyond the fission isomeric state.

In an alternative approach, oneperforms self-consistent semiclassical calculations
to get average deformation energies of the liquid drop type and smoothly varying
mean fields za.sz), From the latter, one may compute the usual Strutinsky shell
correction energy . Indeed, numerical calculations have shown t2) that the expansion
of the HF energy E(p) around the Strutinsky smeared density matrix p

E(p)=E(p)+S1E+SZE

	

(8)
converges very rapidly (S1E is the usual shell correction energy and SZE is found
to be very small (<1 MeV) if p is calculated in a self-consistentway . The equivalence
of the semiclassical rocedure and the Strutinsk avers in 68 '69p

	

y

	

g

	

g

	

) allows us therefore
to evaluate the full HF fission barrier by adding the shell correction energy S1E to
the semiclassical deformation energy .
The semiclassical fission barrier by itself allows to estimate in a very economical

way the quality of a given Skyrme force at large deformations, since the "experi-
mental" liquid drop fission barrier is indeed well known from Strutinsky calcula-
tions 6) (e.g. about 3 .5 MeV in Z°°Pu). In fig . 8 we show the semiclassical deforma-
tion energy curve, obtained for Z°°Pu with the SkM force. At each value of the
quadrupole moment QZ, the energy is minimised with respect to the c and h
parameters used to deform the density distribution as in 6). The diffuse densities
po(r) nd pp(r) have been assumed to be Fermi-functions across the corresponding
liquid drop surface for each deformed shaper. We compare the semiclassical fission
barrier in fig. 8 with the self-consistently averaged HF barrier obtained as described
above. Both curves agree within -~-1 MeV for all deformations . This agreement
provides a strong confirmation of the relevance of the semiclassical variational
method. The latter is only concerned with relative energies . The slight overbinding
in the absolute ETF energies has already been discussed in sect . 2 .
Upon adding the shell correction energy S1E obtained from a self-consistently

Strutinsky averaged HF calculation to the average HF energy at each deformation,
the HF deformation energy curve of Za°Pu is reproduced within ~1 MeV as shown
in fig. 8. This is another confirmation of the very fast convergence of the Strutinsky
energy expansion (8) . From this result and the very close agreement of the self-
consistent semiclassical and the self-consistently Strutinsky averaged deformation

' In a former publication z°), the "soh ,~" parametrisation of ref. ~ has been used which, as it turns
out, provides significantly higher deformation energies at large deformations . This explains why the
SkM barrier given in ref . s`) is higher than the one presented here . [For details, see ref . 3z).]
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energy curves, it seems clear that applying the Strutinsky shell correction method
using the results of semiclassical calculations will give a very satisfactory substitute
to the full HF+BCS approach .

4. Discaiseion snd farther possible improvements

In our present calculations using the effective force parametrisation SkM, we
have confirmed the validity of the Strutinsky approach and of the expectation value
method, whichhad been extensively tested earlier with the SIII force. In particular,
the good agreement between the self-consistently Strutinsky averaged HF energies
and the ones obtained with the variational extended Thomas-Fermi method is
worth noting . The two-step iterative method, as practised so far, yields also with
the SkM force satisfactory deformation energies up to the fission isomeric state in
zaoPu, but fails for larger deformations .
The densities calculated with theSkM force for a series of spherical and deformed

nuclei lead to charge radii and multipole moments in good agreement with available
experimental data . In fact, the agreement is significantly better than it was with
previous Skyrme forces (e.g . SIII). However, as we have seen, the SkM force leads
consistently to a systematic overbinding and to a too low fission barrier of Za°Pu.
Both these features can be related to a slightly too low surface energy coefficient
as. As shown in fig . 1, a least-square fit of the binding energy excess for the
calculated spherical nuclei + indicates that as should be increased by ^-0.6 MeV.

In an attempt to improve the SkM force, we have changed its parameters such
as to increase as, without changing the infinite nuclear matter properties p, E/A,
K~ and the isoscalar effective mass m */m. Keeping furthermore x~, xZ and x3

equal to zero (as for SkM), an increase of as can only be obtained through an
increase of the parameter combination 9t t- St2 with the combination 3 t, +5 t 2
remaining unchanged . In this way we have determined t t and tZ by adjusting the
height of the semiclassically calculated fission barrier of z'°Pu to its empirical liquid
drop (LD) value s_ t° ) . A more detailed discussion of this procedure is given in ref.
s2) . It leads us to a "modified SkM force" with the parameters t1 =410 MeV ~ fms
and t2 = -135 MeV ~ fm5 ; all the other parameters are the same as for SkM 3 ) . The
surface energy is then by 0.65 MeV larger than for SkM and is thus consistent with
what was estimated above from the binding energy excesses of the SkM force. As
seen from table 1, the relative symmetry energies J/av and tcs vary very little
between the original and the modified SkM forces . In fig . 10 we present the
semiclassical (ETF) fission barriers of Z4°Pu obtained with both these forces . One
notices a close agreement of the "modified SkM" barrier with the empirical LD

' It has been observed fo~ the SIII force (which has m'/m ~ ; similarly as SkM), that deformed
nuclei are systematically underbound even though the binding energies of spherical nuclei are correct.
This feature, as discussed in ref . 1 ), is related to the existence of ground-state long-range correlations.
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Fig. 10 . Self-consistent semiclasaical (ETF) Za°Pu fission barriers calculated for the SkMand "modified
SkM" forces . The liquid drop (LDM) fission barrier is taken from ref. 6) . The barriers have been
obtained using the [c, h] shape parametrisation of ref. e) along the static fission path in the [c, h] plane,

and then plotted against the corresponding quadrupole moments.

barrier over a large region of deformations, although only the height of the barrier
(~3.8 MeV relative to the ground state) has been adjusted .

TABLE 7

Same as table 2 for the "modified SkM"force

Using the modified SkM force, we have calculated the binding energy and radii
of the same spherical nuclei as considered above, both in the HF+BCS and the
extended Thomas-Fermi approach . The results are presented in tables 7 and 8 .
As is also illustrated in fig . 11, the experimental binding energies of the ß-stable
isotopes are now reproduced to within tl MeVby theHF+BCS results. For nuclei
well off the stability line (such as 48Ca and tsssn), the agreement is still rather
unsatisfactory . In order to improve on this deficiency, one would have to vary
independently the volume and surface asymmetrycoefficients . This can be achieved
by introducing at least one more non-zero exchange parameter (i .e . x l, x2 or x3) .

In spite of this defect in the asymmetry energy, it is interesting to note from table
8 that changes in the charge densities, although small, lead consistently

BeaD BHF
B
ETF

'60 127.6 127.7 126.0
a°Ca 342.1 341 .1 343 .6
asCa 416.0 420.1 419.3
ss Ni 484.0 485.4 481 .0
9°Zr 783.9 784.5 783.7"aSn 971 .6 969.2 972.5
"ZSn 1102.7 1110 .7 1097.8
iaoCe 1172.7 1173.9 1170 .4
zosPb 1636.5 1636 .4 1621 .9
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TnH~ 8
Same as table 3 for the "modified SkM"force

to an improved agreement with experimental data, compared to the SkM results
(table 3) .
We would like to emphasize that the modified SkM force parametrisation presen-

ted here is by no means a final one. It served here to demonstrate that, indeed,
parameter sets can be foundwhich lead to significant improvements of the theoreti-
cal predictions of various static nuclear properties, based both on HF+BCS and
semiclassical calculations .
To conclude, we may state that, besides the above-mentioned poor reproduction

of the binding energies of ß-unstable nuclei, one should try also to include giant
resonance and pair correlation properties in the process of refitting the Skyrme
force parameters . Investigations along these lines are under way.

Three of us (J.B., C.G . and P.Q.) are indebted to W. Weise and the members
of the Institut für Theoretische Physik at the University of Regensburg for their
warm hospitality .
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Fig. 11 . Binding energy excess dB as in fig. 1 but for the "modified SkM"force.

r~~m r~c rHF rerF
(r~
-rpi~ ~rn-

rp ~HTF
«o «o Pv Po

'60 2.73 2.73 2.81 2.78 -0.03 -0.02 0.448 0.452 0.0789 0.1597ao~ 3,49 3.48 3.52 3.47 -0.05 -0.04 0.460 0.468 0.0790 0.1607
`sCa 3.48 3.48 3.54 3.54 0.16 0.17 0.500 0.442 0.0706 0.1607ssNi 3.75 3.77 3.81 -0.06 -0.05 0.463 0.473 0.0780 0.1592
9°Zr 4.27 4.26 4.30 4.29 0.05 0.07 0.491 0.454 0.0710 0.1574
tusn 4.60 4.61 0.08 0.08 0.496 0.453 0.0693 0.1557isasn 4.73 4.75 0.23 0.24 0.540 0.438 0.0621 0.1543iao~ 4,88' 4.89 4.89 0.13 0.14 0.512 0.446 0.0656 0.1540
2°sPb 5.50 5.49 5.51 5.53 0.17 0.17 0.529 0.441 0.0613 0.1504
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to the computer staff at the ILLfor excellent working conditions .

References
1) P. Quentin and H. Flocard, Ann. Rev. Nucl . Part. Sci . 28 (1978) 523
2) M. Beiner, H. Flocard, Nguyen Van Giai andP. Quentin, Nucl . Phys . A238 (1975) 29
3) H. Krivine, J. Treiner and O. Bohigas, Nucl . Phys . A336 (1980) 155
4) D. Vautherin, Phys . Rev. C7 (1973) 296
5) V.M . Strutinsky, Yad. Fiz . 3 (1966) 614 [Sov. J. Nucl . Phys. 3 (1966) 499] ; Ark. Fys. 36 (1966)

629; Nucl . Phys . A95 (1967) 420; A122 (1968) 1
6) M. Brack, J. Damgaard, A.S. Jensen, H.C . Pauli, V.M . Strutinsky end C.Y. Wong, Rev. Mod.

Phys . 44 (1972) 320
7) M. Bolsterli, E.O . Fiset, J.R . Nix and J.L . Norton, Phys. Rev. C5 (1972) 1050
S) S.G . Nilsson, C.F . Tsang, A. Sobiczewski, Z. Szymaßski, S. Wycech, C. Gustafsson, L-L. Lamm,

P. Möller and B. Nilsson, Nucl . Phys . A131 (1969) 1
9) B.L. Andersen, F. Dickmann andK. Dietrich, Nucl . Phys . A159 (1970) 337

10) D. Scharnweber, W. Greiner and U. Mosel, Nucl. Phys . A164 (1971) 257
11) M. Brack and P. Quentin, Phys . Lett. 56B (1975) 421
12) M. Brack and P. Quentin, Nucl . Phys . A361 (1981) 35
13) C.H . Ko, H.C . Pauli, M. Brack and G.E . Brown, Phys . Lett . 45B (1973) 433; Nucl . Phys . A236

(1974) 269
14) M. Brack, Phys . Lett . 71B (1977) 239
15) A.K . Dutta, R.K . Bhaduri, M.K . Srivastava and M. Vellü'.res, Phys. Lett. 84B (1979) 17
16) A.K . Dutta, M. Vallières, R.K. Bhaduri and I. Easson, Nucl . Phys . A341 (1980) 461
17) A.K . Dutta and M. Kohno, Nucl . Phys . A349 (1980) 455
18) R.K . Bhaduri, Phys . Rev. Lett . 39 (1977) 329
19) M. Durand, M. Brack andP. Schuck, Z. Phys . A286 (1978) 381 ;

M. Durand, P. Schuck and M. Brack, Z. Phys . A296 (1980) 87
20) J. Bartel, R.K . Bhaduri, M. Brack, M. Durand and P. Schuck, to be published ;

J . Bartel andM. ValliBres, Phys. Lett. B, in press
21) Y.H . Chu, B.K . Jennings and M. Brack, Phys . Lett. 68B (1977) 407
22) B. Grammaticos andA. Voros, Ann. of Phys. 123 (1979) 359; 129 (1980) 153
23) C. Guet and M. Brack, Z. Phys. A297 (1980) 247
24) C. Guet, H.-B . H~kansson andM. Brack, Phys. Lett. 97B (1980) 7
25) M.J . Giannoni and P. Quentin, Phys . Rev. C21(1980) 2076
26) N. Marty et al., in Pros . Int . Symp . on highly excited states in nuclei, Jülich (1975) p. 17 ;

D.H. Youngblood et al ., Phys . Rev. Lett. 39 (1977) 1188
27) J.P. Blaizot, D. Gogny and B. Grammal9oos, Nucl. Phys. A265 (1976) 315
28) X. Campi and D.W.L . Sprung, Nucl . Phys . A194 (1972) 401;

S. Coon and H.S. Köhler, Nucl. Phys. A231 (1974) 95
29) H.v . Groote,E.R . Hilf and K. Takahashi, At . Data and Nucl. Deta Tables 17 (1976) 418;

W.D . Myers, At . Data and Nucl . Data Tables 17 (1976) 411 ;
J.M. Pearson, private communication

30) W.D . Myers and W.J . Swiatecki, Ann. of Phys . 5S (1969) 395 ; 84 (1974) 186
31) M. Brack, C. Guet, H.-B. H~kansson, A. Magner and V.M . Strutinsky, Proc . 4th Int. Conf . on

nuclei far from stability, Helsing0r (1981) CERN-Report 81, vol. 1, p. 165
32) C. Guet, H.-B . HAkansson and M. Brack, Nucl . Phys . A, to be submitted
33) D. Vautherin andD.M. Brink, Phys . Rev. CS (1972) 626
34) A.H. Wapstra and K. Bos, At. Data and Nucl . Data Tables 19 (1977) 177



100

	

1. Bartel et al. l Skyrme-like effective forces

35) P. Quentin, in Nuclear self-consistent fields, ed . G. Ripka and M. Porneuf (North-Holland,
Amsterdam, 1975) p. 297

36) W. Bertozzi, I . Friar, J. Heisenberg and J.W . Negele, Phys . Lett . 41B (1972) 408
37) R. Engfer et al., At . Data and Nucl . Data Tables 14 (1974) 509
38) I . Sick and J.S. MacCarthy, Nucl. Phys . A150 (1970) 631;

R.F. Frosh et al., Phys. Rev. 174 (1968) 174;
L.A . Fajardo, J.R . Ficenec, W.P. Trouver and I. Sick, Phys. Lett. 37B (1971) 363

39) H.S . Köhler, Nucl . Phys . A258 (1976) 301
40) F. Tondeur, J. of Phys . GS (1979) 1189
41) J. Damgaard, H.C . Pauli, V.V . Pashkevich andV.M . Strutinsky, Nucl . Phys . A135 (1969) 432
42) H. Flocard, P. Quentin, A.K . Kerman andD. Vautherin, Nucl . Phys. A203 (1973) 433
43) D. Gogny, in Proc. Int. Conf. nucl . phys ., ed . J . de Bcer andH.J . Mang (North-Holland, Amsterdam,

1973) vol . 1, p. 48 ; and in Nucl . self-consistent fields, ed . G. Ripka endM. Porneuf (North-Holland,
Amsterdam, 1975) p. 333

44) F. Cooper et al., Phys. Rev. C13 (1976) 1083
45) H.J . Wolleraheim et al., Phys . Lett . 48B (1974) 323
46) H. Flocard, P. Quentin and D. Vautherin, Phys . Lett . 46B (1973) 159
47) M. Girod, private communication
48) J.W . Negele and G. Rinker, Phys. Rev. C15 (1977) 1499
49) J.W . Negele and D, Vautherin, Phys . Rev. C5 (1972) 1472
50. J.W . Negele and D. Vautherin, Phys . Rev. Cll (1975) 1031
51) P.H . Stetson end L. Grodzins, Nucl . Data Tables A1 (1965) 21
52) F.K. McGowan et al., Phys . Rev. Lett. 27 (1971) 1741 ;

C.E . Bemis, Jr . et al., Phys . Rev. CS (1973) 1466
53) D. Habs, V. Metag, H.J . Specht and G. Ulfert, Phys . Rev. Lett. 38 (1977) 387
54) U. Götz, H.C. Pauli, K. Alder and K. Junker, Nucl . Phys . A192 (1972) 1
55) M. Brack, T. Ledergerber, H.C. Pauli andA.S . Jensen, Nucl. Phys . A234 (1974) 185
56) P. Möller, S.G. Nilsson and J.R . Nix, Nucl . Phys . A229 (1974) 292
57) F.A. Gareev, S.P . Ivanova and V.V. Pashkevich, [Yad . Fiz . 11(1970) 1200]; Sov. J . Nucl . Phys . 11

(1970) 667
58) D.W.L. Sprung, S.G . Lie, M. Vallières and P. Quentin, Nucl . Phys . A326 (1979) 37
59) C. Gustafsson, L-L. Lamm, B. Nilsson and S.G. Nilsson, Ark. Fys. 36 (1967) 613
60) J. Libert,M. Meyer andP. Quentin, Phys. Lett. 95B (1980) 175
61) H. Flocard, P. Quentin, D. Vautherin and A.K. Kerman, in Physics and chemistry of fission 1973,

vol . 1 (IAEA, Vienna, 1974), p. 221
62) H. Flocard, P. Quentin, D. Vautherin, M. Vénéroni andA.K. Kerman, Nucl . Phys . A231(1974)176
63) J.F . Berger and M. Girod, in Physics and chemistry of fission 1979, vol . 1 (IAEA, Vienna, 1980)

p. 265; and private communication
64) D. Kolb, R.Y . Cusson and H.W . Schmitt, Phys. Rev. C10 (1974) 1529
65) M. Brack, in Physics and chemistry of fission 1979, vol . 1 (IAEA, Vienna, 1980) p. 227
66) M. Brack, P. Quentin and D. Vautherin, in Super heavy elements, ed . M.A.K . Lodhi (Pergamon,

New York, 1978) p. 309
67) F. Tondeur, Nucl . Phys. A338 (1980) 77
68) M. Brack andH.C . Pauli, Nucl . Phys . A207 (1973) 401
69) B.K . Jennings, Ph.D . thesis, McMaster Univ . (1976) unpublished ;

B.K . Jennings, R.K. Bhaduri and M. Brack, Nucl. Phys . A253 (1975) 29


