14,017 research outputs found

    A new methodology called dice game optimizer for capacitor placement in distribution systems

    Get PDF
    Purpose. Shunt capacitors are installed in power system for compensating reactive power. Therefore, feeder capacity releases, voltage profile improves and power loss reduces. However, determination optimal location and size of capacitors in distributionsystems is a complex optimization problem. In order to determine the optimum size and location of the capacitor, an objective function which is generally defined based on capacitor installation costs and power losses should be minimized According to operational limitations. This paper offers a newly developed metaheuristic technique, named dice game optimizerto determine optimal size and location of capacitors in a distribution network. Dice game optimizer is a game based optimization technique that is based on the rules of the dice game.ЦСль. Π¨ΡƒΠ½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ кондСнсаторы Π² энСргосистСмС ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ΡΡ для компСнсации Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мощности. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сниТаСтся Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ Ρ„ΠΈΠ΄Π΅Ρ€Π°, ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒ напряТСния ΠΈ ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ΡΡ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ мощности. Однако ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ мСстополоТСния ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° кондСнсаторов Π² систСмах распрСдСлСния являСтся слоТной Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΈ располоТСниС кондСнсатора, Ρ†Π΅Π»Π΅Π²ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, которая ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ опрСдСляСтся Π½Π° основС Π·Π°Ρ‚Ρ€Π°Ρ‚ Π½Π° установку кондСнсатора ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ мощности, слСдуСт ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² соотвСтствии с эксплуатационными ограничСниями. Данная ΡΡ‚Π°Ρ‚ΡŒΡ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ Π½Π΅Π΄Π°Π²Π½ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ мСтаэвристичСский ΠΌΠ΅Ρ‚ΠΎΠ΄, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ³Ρ€Ρ‹ Π² кости, для опрСдСлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΈ располоТСния кондСнсаторов Π² Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ сСти. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€ ΠΈΠ³Ρ€Ρ‹ Π² кости – это ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ, основанный Π½Π° ΠΏΡ€Π°Π²ΠΈΠ»Π°Ρ… ΠΈΠ³Ρ€Ρ‹ Π² кости

    On the role of tachoclines in solar and stellar dynamos

    Get PDF
    Rotational shear layers at the boundary between radiative and convective zones, tachoclines, play a key role in the process of magnetic field generation in solar-like stars. We present two sets of global simulations of rotating turbulent convection and dynamo. The first set considers a stellar convective envelope only; the second one, aiming at the formation of a tachocline, considers also the upper part of the radiative zone. Our results indicate that the resulting mean-flows and dynamo properties like the growth rate, saturation energy and mode depend on the Rossby (Ro) number. For the first set of models either oscillatory (with ~2 yr period) or steady dynamo solutions are obtained. The models in the second set naturally develop a tachocline which, in turn, leads to the generation of strong mean magnetic field. Since the field is also deposited into the stable deeper layer, its evolutionary time-scale is much longer than in the models without a tachocline. Surprisingly, the magnetic field in the upper turbulent convection zone evolves in the same time scale as the deep field. These models result in either an oscillatory dynamo with ~30 yr period or in a steady dynamo depending on Ro. In terms of the mean-field dynamo coefficients computed using FOSA, the field evolution in the oscillatory models without a tachocline seems to be consistent with dynamo waves propagating according to the Parker-Yoshimura sign rule. In the models with tachoclines the dynamics is more complex involving other transport mechanisms as well as tachocline instabilities.Comment: 42 pages, 9 figures. Accepted for publication in Ap

    A multi-wavelength study of SXP 1062, the long period X-ray pulsar associated with a supernova remnant

    Full text link
    SXP 1062 is a Be X-ray binary located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multi-wavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (SWIFT telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in Be X-ray binaries at periastron passage of the neutron star. To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multi-wavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the neutron star is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.Comment: accepted for publication in MNRA

    Unveiling shocks in planetary nebulae

    Full text link
    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.Comment: 13 pages, 9 figures, 3 tables; To appear in Astronomy & Astrophysic

    What sets the magnetic field strength and cycle period in solar-type stars?

    Full text link
    Two fundamental properties of stellar magnetic fields have been determined by observations for solar-like stars with different Rossby numbers (Ro), namely, the magnetic field strength and the magnetic cycle period. The field strength exhibits two regimes: 1) for fast rotation it is independent of Ro, 2) for slow rotation it decays with Ro following a power law. For the magnetic cycle period two regimes of activity, the active and inactive branches, also have been identified. For both of them, the longer the rotation period, the longer the activity cycle. Using global dynamo simulations of solar like stars with Rossby numbers between ~0.4 and ~2, this paper explores the relevance of rotational shear layers in determining these observational properties. Our results, consistent with non-linear alpha^2-Omega dynamos, show that the total magnetic field strength is independent of the rotation period. Yet at surface levels, the origin of the magnetic field is determined by Ro. While for Ro<1 it is generated in the convection zone, for Ro>1 strong toroidal fields are generated at the tachocline and rapidly emerge towards the surface. In agreement with the observations, the magnetic cycle period increases with the rotational period. However, a bifurcation is observed for Ro~1, separating a regime where oscillatory dynamos operate mainly in the convection zone, from the regime where the tachocline has a predominant role. In the latter the cycles are believed to result from the periodic energy exchange between the dynamo and the magneto-shear instabilities developing in the tachocline and the radiative interior.Comment: 43 pages, 14 figures, accepted for publication in The Astrophysical Journa

    Phase Diagram of the 1D Anderson Lattice

    Full text link
    We map out the phase diagram of the one--dimensional Anderson lattice by studying the ground state magnetization as a function of band--filling using the density matrix renormalization group technique. For strong coupling, we find that the quarter--filled system has an S=0 ground state with strong antiferromagnetic correlations. As additional electrons are put in, we find first a ferromagnetic phase, as reported by M\"{o}ller and W\"{o}lfle, and then a phase in which the ground state has total spin S=0S=0. Within this S=0S=0 phase, we find RKKY oscillations in the spin--spin correlation functions.Comment: REVTEX manuscript with 5 Postcript figures included in uu file. Submitted to Phys. Rev.

    A Perturbative Approach to the Relativistic Harmonic Oscillator

    Get PDF
    A quantum realization of the Relativistic Harmonic Oscillator is realized in terms of the spatial variable xx and {\d\over \d x} (the minimal canonical representation). The eigenstates of the Hamiltonian operator are found (at lower order) by using a perturbation expansion in the constant cβˆ’1c^{-1}. Unlike the Foldy-Wouthuysen transformed version of the relativistic hydrogen atom, conventional perturbation theory cannot be applied and a perturbation of the scalar product itself is required.Comment: 9 pages, latex, no figure

    Magnetic ground state and 2D behavior in pseudo-Kagome layered system Cu3Bi(SeO3)2O2Br

    Full text link
    Anisotropic magnetic properties of a layered kagome-like system Cu3Bi(SeO3)2O2Br have been studied by bulk magnetization and magnetic susceptibility measurements as well as powder and single-crystal neutron diffraction. At T_N = 27.4 K the system develops an alternating antiferromagnetic order of (ab) layers, which individually exhibit canted ferrimagnetic moment arrangement, resulting from the competing ferro- and antiferro-magnetic intralayer exchange interactions. A magnetic field B_C ~ 0.8 T applied along the c axis (perpendicular to the layers) triggers a metamagnetic transition, when every second layer flips, i.e., resulting in a ferrimagnetic structure. Significantly higher fields are required to rotate the ferromagnetic component towards the b axis (~7 T) or towards the a axis (~15 T). The estimates of the exchange coupling constants and features indicative of an XY character of this quasi-2D system are presented.Comment: 7 pages, 6 figures, final versio
    • …
    corecore