213 research outputs found

    The Heliogyro Reloaded

    Get PDF
    The heliogyro is a high-performance, spinning solar sail architecture that uses long - order of kilometers - reflective membrane strips to produce thrust from solar radiation pressure. The heliogyro s membrane blades spin about a central hub and are stiffened by centrifugal forces only, making the design exceedingly light weight. Blades are also stowed and deployed from rolls; eliminating deployment and packaging problems associated with handling extremely large, and delicate, membrane sheets used with most traditional square-rigged or spinning disk solar sail designs. The heliogyro solar sail concept was first advanced in the 1960s by MacNeal. A 15 km diameter version was later extensively studied in the 1970s by JPL for an ambitious Comet Halley rendezvous mission, but ultimately not selected due to the need for a risk-reduction flight demonstration. Demonstrating system-level feasibility of a large, spinning heliogyro solar sail on the ground is impossible; however, recent advances in microsatellite bus technologies, coupled with the successful flight demonstration of reflectance control technologies on the JAXA IKAROS solar sail, now make an affordable, small-scale heliogyro technology flight demonstration potentially feasible. In this paper, we will present an overview of the history of the heliogyro solar sail concept, with particular attention paid to the MIT 200-meter-diameter heliogyro study of 1989, followed by a description of our updated, low-cost, heliogyro flight demonstration concept. Our preliminary heliogyro concept (HELIOS) should be capable of demonstrating an order-of-magnitude characteristic acceleration performance improvement over existing solar sail demonstrators (HELIOS target: 0.5 to 1.0 mm/s2 at 1.0 AU); placing the heliogyro technology in the range required to enable a variety of science and human exploration relevant support missions

    Laboratory diagnosis and susceptibility profile of Helicobacter pylori infection in the Philippines

    Get PDF
    BACKGROUND: Helicobacter pylori diagnosis and susceptibility profile directs the applicability of recommended treatment regimens in our setting. To our knowledge, there is no published data on the culture and local susceptibility pattern of Helicobacter pylori in the Philippines. METHODS: 52 dyspeptic adult patients undergoing endoscopy from the Outpatient Gastroenterology clinic of the University of the Philippines-Philippine General Hospital underwent multiple gastric biopsy and specimens were submitted for gram stain, culture, antimicrobial sensitivity testing, rapid urease test and histology. Antimicrobial susceptibility testing was done by Epsilometer testing (Etest) method against metronidazole, clarithromycin, amoxicillin, and tetracycline. RESULTS: Sixty percent (60%) of the study population was positive for H. pylori infection (mean age of 44 years ± 13), 70% were males. H. pylori culture showed a sensitivity of 45% (95% CI [29.5–62.1]), specificity of 98% (95%CI [81.5–100%]), positive likelihood ratio of 19.93 (95% CI [1.254–317.04]) and a negative likelihood ratio of 0.56 (95% CI [0.406–0.772]). All H. pylori strains isolated were sensitive to metronidazole, clarithromycin, amoxicillin and tetracycline. CONCLUSION: Knowledge of the antibiotic susceptibility patterns in our setting allows us to be more cautious in the choice of first-line agents. Information on antibiotic susceptibility profile plays an important role in empiric antibiotic treatment and management of refractive cases

    Heliogyro Solar Sail Research at NASA

    Get PDF
    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020

    Endomicroscopic and transcriptomic analysis of impaired barrier function and malabsorption in environmental enteropathy

    Get PDF
    Introduction: Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods: We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results: CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions: Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE

    Vitamin A deficiency and inflammatory markers among preschool children in the Republic of the Marshall Islands

    Get PDF
    BACKGROUND: The exclusion of individuals with elevated acute phase proteins has been advocated in order to improve prevalence estimates of vitamin A deficiency in surveys, but it is unclear whether this will lead to sampling bias. The purpose of the study was to determine whether the exclusion of individuals with elevated acute phase proteins is associated with sampling bias and to characterize inflammation in children with night blindness. METHODS: In a survey in the Republic of the Marshall Islands involving 281 children, aged 1–5 years, serum retinol, C-reactive protein (CRP), and α(1)-acid glycoprotein (AGP) were measured. RESULTS: Of 281 children, 24 (8.5%) had night blindness and 165 (58.7%) had serum retinol <0.70 μmol/L. Of 248 children with AGP and CRP measurements, 123 (49.6%) had elevated acute phase proteins (CRP >5 mg/L and/or AGP >1000 mg/L). Among children with and without night blindness, the proportion with serum retinol <0.70 μmol/L was 79.2% and 56.8% (P = 0.03) and with anemia was 58.3% and 35.7% (P = 0.029), respectively. The proportion of children with serum retinol <0.70 μmol/L was 52.0% after excluding children with elevated acute phase proteins. Among children with and without elevated acute phase proteins, mean age was 2.8 vs 3.2 years (P = 0.016), the proportion of boys was 43.1% vs. 54.3% (P = 0.075), with no hospitalizations in the last year was 11.0% vs 23.6% (P = 0.024), and with anemia was 43.8% vs 31.7% (P = 0.05), respectively. CONCLUSIONS: Exclusion of children with inflammation in this survey of vitamin A deficiency does not improve prevalence estimates for vitamin A deficiency and instead leads to sampling bias for variables such as age, gender, anemia, and hospitalization history

    Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study

    Get PDF
    Background Environmental enteropathy (EE), the adverse impact of frequent and numerous enteric infections on the gut resulting in a state of persistent immune activation and altered permeability, has been proposed as a key determinant of growth failure in children in low- and middle-income populations. A theory-driven systems model to critically evaluate pathways through which enteropathogens, gut permeability, and intestinal and systemic inflammation affect child growth was conducted within the framework of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) birth cohort study that included children from eight countries. Methods Non-diarrheal stool samples (N = 22,846) from 1253 children from multiple sites were evaluated for a panel of 40 enteropathogens and fecal concentrations of myeloperoxidase, alpha-1-antitrypsin, and neopterin. Among these same children, urinary lactulose:mannitol (L:M) (N = 6363) and plasma alpha-1-acid glycoprotein (AGP) (N = 2797) were also measured. The temporal sampling design was used to create a directed acyclic graph of proposed mechanistic pathways between enteropathogen detection in non-diarrheal stools, biomarkers of intestinal permeability and inflammation, systemic inflammation and change in length- and weight- for age in children 0–2 years of age. Findings Children in these populations had frequent enteric infections and high levels of both intestinal and systemic inflammation. Higher burdens of enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, were associated with elevated biomarker concentrations of gut and systemic inflammation and, via these associations, indirectly associated with both reduced linear and ponderal growth. Evidence for the association with reduced linear growth was stronger for systemic inflammation than for gut inflammation; the opposite was true of reduced ponderal growth. Although Giardia was associated with reduced growth, the association was not mediated by any of the biomarkers evaluated. Interpretation The large quantity of empirical evidence contributing to this analysis supports the conceptual model of EE. The effects of EE on growth faltering in young children were small, but multiple mechanistic pathways underlying the attribution of growth failure to asymptomatic enteric infections had statistical support in the analysis. The strongest evidence for EE was the association between enteropathogens and linear growth mediated through systemic inflammation

    Differential Response to Soil Salinity in Endangered Key Tree Cactus: Implications for Survival in a Changing Climate

    Get PDF
    Understanding reasons for biodiversity loss is essential for developing conservation and management strategies and is becoming increasingly urgent with climate change. Growing at elevations <1.4 m in the Florida Keys, USA, the endangered Key tree cactus (Pilosocereus robinii) experienced 84 percent loss of total stems from 1994 to 2007. The most severe losses of 99 and 88 percent stems occurred in the largest populations in the Lower Keys, where nine storms with high wind velocities and storm surges, occurred during this period. In contrast, three populations had substantial stem proliferation. To evaluate possible mortality factors related to changes in climate or forest structure, we examined habitat variables: soil salinity, elevation, canopy cover, and habitat structure near 16 dying or dead and 18 living plants growing in the Lower Keys. Soil salinity and elevation were the preliminary factors that discriminated live and dead plants. Soil salinity was 1.5 times greater, but elevation was 12 cm higher near dead plants than near live plants. However, distribution-wide stem loss was not significantly related to salinity or elevation. Controlled salinity trials indicated that salt tolerance to levels above 40 mM NaCl was related to maternal origin. Salt sensitive plants from the Lower Keys had less stem growth, lower root:shoot ratios, lower potassium: sodium ratios and lower recovery rate, but higher δ 13C than a salt tolerant lineage of unknown origin. Unraveling the genetic structure of salt tolerant and salt sensitive lineages in the Florida Keys will require further genetic tests. Worldwide rare species restricted to fragmented, low-elevation island habitats, with little or no connection to higher ground will face challenges from climate change-related factors. These great conservation challenges will require traditional conservation actions and possibly managed relocation that must be informed by studies such as these
    • …
    corecore