76 research outputs found

    Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard

    Get PDF
    [EN] Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW

    Influence of the use of External Carbon Fiber Reinforcement on the Flexural Behavior of Prismatic Concrete Test Specimens. An Application for Repairing of Deteriorated Agricultural Structures

    Get PDF
    This manuscript reports a study of the capacity of polymer composites to increase flexural strength in concrete. The polymer composites reinforced with carbon fiber and bonded with epoxy adhesive were used in prismatic test specimens of mass concrete corresponding to two different morphologies. The aim was to simulate the restoration of deteriorating concrete agricultural structures in order to explore the viability of this alternative against replacing them. An increase was found in the strength of the elements tested, with a higher strength being observed in those test specimens presenting a modified geometry.NOThis research was funded by SPANISH MINISTER OF ECONOMY AND COMPETITIVENESS, grant number BIA2017-83526RThe authors acknowledge the technical support and material used for experiments donated by Sika Grou

    Recycling Aggregates for Self-Compacting Concrete Production: A Feasible Option

    Get PDF
    [EN] The use of construction and demolition wastes (C&DW) is a trending future option for the sustainability of construction. In this context, a number of works deal with the use of recycled concrete aggregates to produce concrete for structural and non-structural purposes. Nowadays, an important number of C&DW management plants in the European Union (EU) and other countries have developed robust protocols to obtain high-quality coarse recycled aggregates that comply with different European standards in order to be used to produce new concrete. The development of self-compacting concrete (SCC) is another way to boost the sustainability of construction, due to the important reduction of energy employed. Using recycled aggregates is a relatively recent scientific area, however, studies on this material in the manufacture of self-compacting concrete have proven the feasibility thereof for conventional structural elements as well as high-performance and complex structural elements, densely reinforced structures, difficult-to-access formwork and difficult-to-vibrate elements. This paper presents an original study on the use of coarse recycled concrete aggregate (CRA) to obtain self-compacting concrete. Concrete with substitution ratios of 20%, 50% and 100% are compared with a control concrete. The purpose of this comparison is to check the influence of CRA on fresh SCC as well as its physical and mechanical properties. The parameters studied are material characterization, self-compactability, compressive strength, and tensile and flexural strength of the resulting concrete. The results conclude that it is feasible to use CRA for SCC production with minimal losses in the characteristics

    Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture

    Get PDF
    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed techS

    Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes

    Get PDF
    [EN] Production of residues from industries and construction and demolition sectors has increased during last years. The total amount of debris produced according to different estimations reaches values close to 42 million tonnes yr –1 . Much of this waste has been thrown to landfill, without considering its potential for reuse, recycling or valuation. The aim of this research is to describe some of the physical and mechanical properties of different laboratory-mixed concretes, using various proportions of additional materials recovered from industrial waste and demolition rubble. The added materials are included either as admixtures (forestry residues, cork dust, steel fibre) or in partial substitution of natural aggregates (wire from electrical residues, tyre rubber, white ceramic, sanitary porcelain or shale). The laboratory tests have followed the standard EN protocols. Assay results were variable according to the nature of the material added to the mix: organic materials and shale, despite the steel fibre reinforcement, reduce the compression strength, but are suitable for the manufacture of lightweight concrete for agricultural pavements, with certain flexion resistance and a relatively good behaviour to impact. The substitution of natural aggregates with ceramic and porcelain wastes produces a significant increase in compression resistance, making them suitable for the manufacture of concrete with characteristic resistances above 40 MPa, which can be used both for structures or other agricultural elements: separators, feeders, slat floors. As a conclusion can be stated the possibility of reuse these wastes for the production of structural or non-structural concrete, with different applications in agricultural engineerin

    Effect of Design Parameters on Compressive and Split Tensile Strength of Self-Compacting Concrete with Recycled Aggregate: An Overview

    Get PDF
    [EN] One of the prime objectives of this review is to understand the role of design parameters on the mechanical properties (Compressive and split tensile strength) of Self-Compacting Concrete (SCC) with recycled aggregates (Recycled Coarse Aggregates (RCA) and Recycled Fine Aggregates (RFA)). The design parameters considered for review are Water to Cement (W/C) ratio, Water to Binder (W/B) ratio, Total Aggregates to Cement (TA/C) ratio, Fine Aggregate to Coarse Aggregate (FA/CA) ratio, Water to Solid (W/S) ratio in percentage, superplasticizer (SP) content (kg/cu.m), replacement percentage of RCA, and replacement percentage of RFA. It is observed that with respect to different grades of SCC, designed parameters affect the mechanical properties of SCC with recycled aggregates

    Self-healing concrete with recycled aggregates

    Get PDF
    [EN] The higher water absorption of recycled aggregates is the main drawback which hinders the reuse of this secondary material, limiting its acceptance in the construction market. This study proposes the microbially induced carbonate precipitation (by using Bacillus sphaericus) to improve the quality of mixed and ceramic recycled aggregates. This precipitation has contributed to a weight increase and has unleashed a waterproofing response, most effectively on the roughest particle surfaces. High ceramic content aggregates profited from a greater biodeposition, leading to a remaining amount of precipitates is more deeply fixed in cementitious materials. The pore-filling effect was detected by SEM, supporting the waterproofing result. The use of biotreated aggregates led to more fluid recycled concrete consistencies when the same amount of mixing water was used. Without water adjustments in the concrete mixture, the presence of calcium carbonate lessened long-term compressive strength, although strength development was accelerated, with higher early-age (7 days) values than observed for concrete bearing untreated recycled aggregate

    Biodegradable Polymers on Cementitious Materials

    Get PDF
    [EN] Nowadays the sustainability and safety requirements of structures inspire the study of new self-healing materials and preventive repair methods on cementitious elements. To achieve this undertaking, this research replaces widely employed synthetic polymers by biodegradable ones as consolidants and water-repellents, and assesses the protection and consolidation effect of biopolymers (obtained by using waste biomass of mixed microbial cultures from polyhydroxyalkanoates production processes) as eco-friendly healing agents by analysing the water absorption of two kind of materials. The first group of samples are cement mortar specimens whose external surface has been treated with biopolymer products and subsequently evaluated by water drop absorption test. The second group of samples are cement mortar specimens formulated with biopolymer products included in its mixing water and later the waterproofing efficiency is analysed by capillary water absorption tests. The water absorption behaviour of both kind of samples shows a potential improvement of cementitious elements durability, since water absorption results have decreased for treated samples in comparison with untreated one

    Biodegradable polymers on cementitious materials

    Get PDF
    PTDC/EPH-PAT/4684/2014 IF/01054/2014/CP1224/CT0005 UID/QUI/50006/2019 UID/Multi/04378/2019 POCI-01-0145-FEDER-007728Nowadays the sustainability and safety requirements of structures inspire the study of new self healing materials and preventive repair methods on cementitious elements. To achieve this undertaking, this research replaces widely employed synthetic polymers by biodegradable ones as consolidants and water-repellents, and assesses the protection and consolidation effect of biopolymers (obtained by using waste biomass of mixed microbial cultures from polyhydroxyalkanoates production processes) as eco-friendly healing agents by analysing the water absorption of two kind of materials. The first group of samples are cement mortar specimens whose external surface has been treated with biopolymer products and subsequently evaluated by water drop absorption test. The second group of samples are cement mortar specimens formulated with biopolymer products included in its mixing water and later the waterproofing efficiency is analysed by capillary water absorption tests. The water absorption behaviour of both kind of samples shows a potential improvement of cementitious elements durability, since water absorption results have decreased for treated samples in comparison with untreated ones.authorsversionpublishe

    Biodegradable Polymers on Cementitious Materials

    Get PDF
    [EN] Nowadays the sustainability and safety requirements of structures inspire the study of new self-healing materials and preventive repair methods on cementitious elements. To achieve this undertaking, this research replaces widely employed synthetic polymers by biodegradable ones as consolidants and water-repellents, and assesses the protection and consolidation effect of biopolymers (obtained by using waste biomass of mixed microbial cultures from polyhydroxyalkanoates production processes) as eco-friendly healing agents by analysing the water absorption of two kind of materials. The first group of samples are cement mortar specimens whose external surface has been treated with biopolymer products and subsequently evaluated by water drop absorption test. The second group of samples are cement mortar specimens formulated with biopolymer products included in its mixing water and later the waterproofing efficiency is analysed by capillary water absorption tests. The water absorption behaviour of both kind of samples shows a potential improvement of cementitious elements durability, since water absorption results have decreased for treated samples in comparison with untreated one
    corecore