34 research outputs found

    Interrater reliability of surveillance for ventilator-associated events and pneumonia

    Get PDF
    OBJECTIVETo compare interrater reliabilities for ventilator-associated event (VAE) surveillance, traditional ventilator-associated pneumonia (VAP) surveillance, and clinical diagnosis of VAP by intensivists.DESIGNA retrospective study nested within a prospective multicenter quality improvement study.SETTINGIntensive care units (ICUs) within 5 hospitals of the Centers for Disease Control and Prevention Epicenters.PATIENTSPatients who underwent mechanical ventilation.METHODSWe selected 150 charts for review, including all VAEs and traditionally defined VAPs identified during the primary study and randomly selected charts of patients without VAEs or VAPs. Each chart was independently reviewed by 2 research assistants (RAs) for VAEs, 2 hospital infection preventionists (IPs) for traditionally defined VAP, and 2 intensivists for any episodes of pulmonary deterioration. We calculated interrater agreement using κ estimates.RESULTSThe 150 selected episodes spanned 2,500 ventilator days. In total, 93–96 VAEs were identified by RAs; 31–49 VAPs were identified by IPs, and 29–35 VAPs were diagnosed by intensivists. Interrater reliability between RAs for VAEs was high (κ, 0.71; 95% CI, 0.59–0.81). Agreement between IPs using traditional VAP criteria was slight (κ, 0.12; 95% CI, −0.05–0.29). Agreement between intensivists was slight regarding episodes of pulmonary deterioration (κ 0.22; 95% CI, 0.05–0.39) and was fair regarding whether episodes of deterioration were attributable to clinically defined VAP (κ, 0.34; 95% CI, 0.17–0.51). The clinical correlation between VAE surveillance and intensivists’ clinical assessments was poor.CONCLUSIONSProspective surveillance using VAE criteria is more reliable than traditional VAP surveillance and clinical VAP diagnosis; the correlation between VAEs and clinically recognized pulmonary deterioration is poor.Infect Control Hosp Epidemiol 2017;38:172–178</jats:sec

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    The Accuracy of Portable Monitoring in Diagnosing Significant Sleep Disordered Breathing in Hospitalized Patients.

    No full text
    Polysomnograms are not always feasible when sleep disordered breathing (SDB) is suspected in hospitalized patients. Portable monitoring is a practical alternative; however, it has not been recommended in patients with comorbidities.We evaluated the accuracy of portable monitoring in hospitalized patients suspected of having SDB.Prospective observational study.Large, public, urban, teaching hospital in the United States.Hospitalized patients suspected of having SDB.Patients underwent portable monitoring combined with actigraphy during the hospitalization and then polysomnography after discharge. We determined the accuracy of portable monitoring in predicting moderate to severe SDB and the agreement between the apnea hypopnea index measured by portable monitor (AHIPM) and by polysomnogram (AHIPSG).Seventy-one symptomatic patients completed both tests. The median time between the two tests was 97 days (IQR 25-75: 24-109). Forty-five percent were hospitalized for cardiovascular disease. Mean age was 52±10 years, 41% were women, and the majority had symptoms of SDB. Based on AHIPSG, SDB was moderate in 9 patients and severe in 39. The area under the receiver operator characteristics curve for AHIPM was 0.8, and increased to 0.86 in patients without central sleep apnea; it was 0.88 in the 31 patients with hypercapnia. For predicting moderate to severe SDB, an AHIPM of 14 had a sensitivity of 90%, and an AHIPM of 36 had a specificity of 87%. The mean±SD difference between AHIPM and AHIPSG was 2±29 event/hr.In hospitalized, symptomatic patients, portable monitoring is reasonably accurate in detecting moderate to severe SDB

    Modified Bland-Altman plot for AHI<sub>PM</sub> and AHI<sub>PSG</sub>.

    No full text
    <p>The difference between AHI<sub>PSG</sub> and AHI<sub>PM</sub> was plotted against AHI<sub>PSG</sub>. Dark circles represent cases in which the central apnea index on portable monitoring was ≥ 5.</p

    Plot versus criterion graph.

    No full text
    <p>This graph plots the sensitivity and specificity with 95% confidence intervals for different cutoff values of AHI<sub>PM</sub>; the criterion was AHI<sub>PSG</sub> ≥ 15.</p

    The central apnea indices on portable monitoring and polysomnography.

    No full text
    <p>The central apnea index with the portable monitor (CAI<sub>PM</sub>) during the hospitalization was generally higher than on outpatient polysomnography (CAI<sub>PSG</sub>).</p
    corecore