137 research outputs found

    Stochastic Cutoff Method for Long-Range Interacting Systems

    Full text link
    A new Monte-Carlo method for long-range interacting systems is presented. This method consists of eliminating interactions stochastically with the detailed balance condition satisfied. When a pairwise interaction VijV_{ij} of a NN-particle system decreases with the distance as rijαr_{ij}^{-\alpha}, computational time per one Monte Carlo step is O(N){\cal O}(N) for αd\alpha \ge d and O(N2α/d){\cal O}(N^{2-\alpha/d}) for α<d\alpha < d, where dd is the spatial dimension. We apply the method to a two-dimensional magnetic dipolar system. The method enables us to treat a huge system of 2562256^2 spins with reasonable computational time, and reproduces a circular order originated from long-range dipolar interactions.Comment: 18 pages, 9 figures, 1 figure and 1 reference are adde

    Photoemission time-delay measurements and calculations close to the 3s ionization minimum in Ar

    Get PDF
    We present experimental measurements and theoretical calculations of photoionization time delays from the 3s3s and 3p3p shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random phase approximation with exchange (RPAE). The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results especially in the region where strong intershell correlations in the 3s to kp channel lead to an induced "Cooper" minimum in the 3s ionization cross-section.Comment: submitted to PR

    Photoemission-time-delay measurements and calculations close to the 3s-ionization-cross-section minimum in Ar

    Get PDF
    We present experimental measurements and theoretical calculations of photoionization time delays from the 3s and 3p shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random-phase approximation with exchange. The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results, especially in the region where strong intershell correlations in the 3s -> kp channel lead to an induced "Cooper" minimum in the 3s ionization cross section

    Cut elimination in multifocused linear logic

    Get PDF
    We study cut elimination for a multifocused variant of full linear logic in the sequent calculus. The multifocused normal form of proofs yields problems that do not appear in a standard focused system, related to the constraints in grouping rule instances in focusing phases. We show that cut elimination can be performed in a sensible way even though the proof requires some specific lemmas to deal with multifocusing phases, and discuss the difficulties arising with cut elimination when considering normal forms of proofs in linear logic.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441

    Collision sellar lesions: experience with eight cases and review of the literature

    Get PDF
    The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented

    DNA methylation in glioblastoma: impact on gene expression and clinical outcome

    Get PDF
    International audienceBACKGROUND: Changes in promoter DNA methylation pattern of genes involved in key biological pathways have been reported in glioblastoma. Genome-wide assessments of DNA methylation levels are now required to decipher the epigenetic events involved in the aggressive phenotype of glioblastoma, and to guide new treatment strategies. RESULTS: We performed a whole-genome integrative analysis of methylation and gene expression profiles in 40 newly diagnosed glioblastoma patients. We also screened for associations between the level of methylation of CpG sites and overall survival in a cohort of 50 patients uniformly treated by surgery, radiotherapy and chemotherapy with concomitant and adjuvant temozolomide (STUPP protocol). The methylation analysis identified 616 CpG sites differentially methylated between glioblastoma and control brain, a quarter of which was differentially expressed in a concordant way. Thirteen of the genes with concordant CpG sites displayed an inverse correlation between promoter methylation and expression level in glioblastomas: B3GNT5, FABP7, ZNF217, BST2, OAS1, SLC13A5, GSTM5, ME1, UBXD3, TSPYL5, FAAH, C7orf13, and C3orf14. Survival analysis identified six CpG sites associated with overall survival. SOX10 promoter methylation status (two CpG sites) stratified patients similarly to MGMT status, but with a higher Area Under the Curve (0.78 vs. 0.71, p-value < 5e-04). The methylation status of the FNDC3B, TBX3, DGKI, and FSD1 promoters identified patients with MGMT-methylated tumors that did not respond to STUPP treatment (p-value < 1e-04). CONCLUSIONS: This study provides the first genome-wide integrative analysis of DNA methylation and gene expression profiles obtained from the same GBM cohort. We also present a methylome-based survival analysis for one of the largest uniformly treated GBM cohort ever studied, for more than 27,000 CpG sites. We have identified genes whose expression may be tightly regulated by epigenetic mechanisms and markers that may guide treatment decisions
    corecore