61 research outputs found

    Increased B Cell ADAM10 in Allergic Patients and Th2 Prone Mice

    Get PDF
    ADAM10, as the sheddase of the low affinity IgE receptor (CD23), promotes IgE production and thus is a unique target for attenuating allergic disease. Herein, we describe that B cell levels of ADAM10, specifically, are increased in allergic patients and Th2 prone WT mouse strains (Balb/c and A/J). While T cell help augments ADAM10 expression, Balb WT B cells exhibit increased ADAM10 in the naïve state and even more dramatically increased ADAM10 after anti-CD40/IL4 stimulation compared C57 (Th1 prone) WT B cells. Furthermore, ADAM17 and TNF are reduced in allergic patients and Th2 prone mouse strains (Balb/c and A/J) compared to Th1 prone controls. To further understand this regulation, ADAM17 and TNF were studied in C57Bl/6 and Balb/c mice deficient in ADAM10. C57-ADAM10B-/- were more adept at increasing ADAM17 levels and thus TNF cleavage resulting in excess follicular TNF levels and abnormal secondary lymphoid tissue architecture not noted in Balb-ADAM10B-/-. Moreover, the level of B cell ADAM10 as well as Th context is critical for determining IgE production potential. Using a murine house dust mite airway hypersensitivity model, we describe that high B cell ADAM10 level in a Th2 context (Balb/c WT) is optimal for disease induction including bronchoconstriction, goblet cell metaplasia, mucus, inflammatory cellular infiltration, and IgE production. Balb/c mice deficient in B cell ADAM10 have attenuated lung and airway symptoms compared to Balb WT and are actually most similar to C57 WT (Th1 prone). C57-ADAM10B-/- have even further reduced symptomology. Taken together, it is critical to consider both innate B cell levels of ADAM10 and ADAM17 as well as Th context when determining host susceptibility to allergic disease. High B cell ADAM10 and low ADAM17 levels would help diagnostically in predicting Th2 disease susceptibility; and, we provide support for the use ADAM10 inhibitors in treating Th2 disease

    MMP-8 Deficiency Increases TLR/RAGE Ligands S100A8 and S100A9 and Exacerbates Lung Inflammation during Endotoxemia

    Get PDF
    Matrix metalloproteinase-8, released mainly from neutrophils, is a critical regulator of the inflammatory response by its ability to cleave multiple mediators. Herein, we report the results of a model of endotoxemia after intraperitoneal LPS injection in mice lacking MMP-8 and their wildtype counterparts. Control, saline-treated animals showed no differences between genotypes. However, there was an increased lung inflammatory response, with a prominent neutrophilic infiltration in mutant animals after LPS treatment. Using a proteomic approach, we identify alarmins S100A8 and S100A9 as two of the main differences between genotypes. Mice lacking MMP-8 showed a significant increase in these two molecules in lung homogenates, but not in spleen and serum. Mice lacking MMP-8 also showed an increase in MIP-1α levels and a marked activation of the non-canonical NF-κB pathway, with no differences in CXC-chemokines such as MIP-2 or LIX. These results show that MMP-8 can modulate the levels of S100A8 and S100A9 and its absence promotes the lung inflammatory response during endotoxemia

    Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent

    Get PDF
    Background : Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods : Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results : In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion : We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics

    Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation of the airways and progressive destruction of lung parenchyma, a process that in most cases is initiated by cigarette smoking. Several mechanisms are involved in the development of the disease: influx of inflammatory cells into the lung (leading to chronic inflammation of the airways), imbalance between proteolytic and anti-proteolytic activity (resulting in the destruction of healthy lung tissue) and oxidative stress. Recently, an increasing number of data suggest a fourth important mechanism involved in the development of COPD: apoptosis of structural cells in the lung might possibly be an important upstream event in the pathogenesis of COPD. There is an increase in apoptotic alveolar epithelial and endothelial cells in the lungs of COPD patients. Since this is not counterbalanced by an increase in proliferation of these structural cells, the net result is destruction of lung tissue and the development of emphysema. Data from animal models suggest a role for Vascular Endothelial Growth Factor (VEGF) in the induction of apoptosis of structural cells in the lung. Other mediators of apoptosis, such as caspase-3 and ceramide, could be interesting targets to prevent apoptosis and the development of emphysema. In this review, recent data on the role of apoptosis in COPD from both animal models as well as from studies on human subjects will be discussed. The aim is to provide an up to date summary on the increasing knowledge on the role of apoptosis in COPD and pulmonary emphysema

    Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of all extracellular matrix (ECM) components in both physiological and pathological processes in various tissues. The aim of this study was to examine the involvement of gelatinase MMP family members, MMP-2 and MMP-9, in dystrophin-deficient skeletal muscle. Towards this aim, we made use of the canine X-linked muscular dystrophy in Japan (CXMD<sub>J</sub>) model, a suitable animal model for Duchenne muscular dystrophy.</p> <p>Methods</p> <p>We used surgically biopsied tibialis cranialis muscles of normal male dogs (n = 3) and CXMD<sub>J </sub>dogs (n = 3) at 4, 5 and 6 months of age. Muscle sections were analyzed by conventional morphological methods and <it>in situ </it>zymography to identify the localization of MMP-2 and MMP-9. MMP-2 and MMP-9 activity was examined by gelatin zymography and the levels of the respective mRNAs in addition to those of regulatory molecules, including MT1-MMP, TIMP-1, TIMP-2, and RECK, were analyzed by semi-quantitative RT-PCR.</p> <p>Results</p> <p>In CXMD<sub>J </sub>skeletal muscle, multiple foci of both degenerating and regenerating muscle fibers were associated with gelatinolytic MMP activity derived from MMP-2 and/or MMP-9. In CXMD<sub>J </sub>muscle, MMP-9 immunoreactivity localized to degenerated fibers with inflammatory cells. Weak and disconnected immunoreactivity of basal lamina components was seen in MMP-9-immunoreactive necrotic fibers of CXMD<sub>J </sub>muscle. Gelatinolytic MMP activity observed in the endomysium of groups of regenerating fibers in CXMD<sub>J </sub>did not co-localize with MMP-9 immunoreactivity, suggesting that it was due to the presence of MMP-2. We observed increased activities of pro MMP-2, MMP-2 and pro MMP-9, and levels of the mRNAs encoding MMP-2, MMP-9 and the regulatory molecules, MT1-MMP, TIMP-1, TIMP-2, and RECK in the skeletal muscle of CXMD<sub>J </sub>dogs compared to the levels observed in normal controls.</p> <p>Conclusion</p> <p>MMP-2 and MMP-9 are likely involved in the pathology of dystrophin-deficient skeletal muscle. MMP-9 may be involved predominantly in the inflammatory process during muscle degeneration. In contrast, MMP-2, which was activated in the endomysium of groups of regenerating fibers, may be associated with ECM remodeling during muscle regeneration and fiber growth.</p

    Role of ADAM and ADAMTS metalloproteinases in airway diseases

    Get PDF
    Lungs are exposed to the outside environment and therefore to toxic and infectious agents or allergens. This may lead to permanent activation of innate immune response elements. A Disintegrin And Metalloproteinases (ADAMs) and ADAMs with Thrombospondin motifs (ADAMTS) are proteinases closely related to Matrix Metalloproteinases (MMPs). These multifaceted molecules bear metalloproteinase and disintegrin domains endowing them with features of both proteinases and adhesion molecules. Proteinases of the ADAM family are associated to various physiological and pathological processes and display a wide spectrum of biological effects encompassing cell fusion, cell adhesion, "shedding process", cleavage of various substrates from the extracellular matrix, growth factors or cytokines... This review will focus on the putative roles of ADAM/ADAMTS proteinases in airway diseases such as asthma and COPD
    corecore