13 research outputs found

    Institutionalising co-production of weather and climate services: learning from the African SWIFT and ForPAc projects

    Get PDF
    There is growing recognition of the multiple benefits of co-production for forecast producers, researchers and users in terms of increasing understanding of the skill, decision-relevance, uptake and use of forecasts. This policy brief identifies lessons learnt from two operational research projects, African SWIFT and ForPAc, on pathways for embedding co-production into operational weather and climate services as the new standard operational procedure. Experiences across these projects identifies the following potential pathways for institutionalising co-production practises within operational weather and climate services: • Changing mindsets and systems to enable co-production of enhanced forecasts and systematic approaches for their use. • Strengthening in-country institutional links between operational forecasting centres and academic institutions to develop sustainable and improved forecasting capacities to meet users’ evolving weather and climate information needs. • Ensuring continued access to raw forecast data from global forecasting centres to continue and further develop new and improved decision-relevant forecasts. • Formalising user engagement in co-production, through agreeing standard and continuity of representation and commitment to providing regular feedback. • Mainstreaming stakeholder engagement and co-production in meteorological training, forecasting operations and environmental research. • Working through existing channels, such as agricultural and livestock extension services, and harnessing social media and remote ways of working to develop sustainable forms of continuous user engagement. • Establishing monitoring systems to demonstrate the benefits of investing in forecasting capacities. • Incentivising collaboration between complementary initiatives. • Addressing the risks of operationalising new and improved weather and climate services in resource- constrained environments

    Customization and Validation of a Regional Climate Model Using Satellite Data Over East Africa

    No full text
    This study focused on the customization of the fourth generation International Center for Theoretical Physics Regional Climate Model version 4.4 and its ability to reproduce the mean climate and most dominant modes of variability over East Africa. The simulations were performed at a spatial resolution of 25 km for the period 1998–2013. The model was driven by ERA-Interim reanalysis. The customization focus was on cumulus and microphysics schemes during the Short Rains for the year 2000. The best physics combinations were then utilized for the validation studies. The East Africa region and Lake Victoria Basin region are adapted to carry out empirical orthogonal function analysis, during the Short and Long Rains. Tropical Rainfall Measuring Mission data was utilized in the validation of the model. The first mode of variability from the model and observational data during the Short Rains was associated with the warming of the Pacific Ocean and the sea surface temperature gradients over the Indian Ocean. During the Long rains, the inter-annual rainfall variability over the Lake Victoria region was associated with the sea surface temperature anomaly over the Indian Ocean and for the East Africa region the associations were weak. The drivers during the Long Rains over East Africa region were then further investigated by splitting the season to the March–April and May periods. The March–April period was positively correlated to the West Pacific and Indian Ocean dipole index, while May was associated with the Quasi-Biennial Oscillation. In conclusion, although the model can reproduce the dominant modes of variability as in the observational data sets during the Short Rains, skill was lower during the Long Rains

    Projected effects of 1.5 °C and 2 °C global warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa

    No full text
    This study examines the effects of 1.5 °C and 2 °C global warming levels (GWLs) on intra-seasonal rainfall characteristics over the Greater Horn of Africa. The impacts are analysed based on the outputs of a 25-member regional multi-model ensemble from the Coordinated Regional Climate Downscaling Experiment project. The regional climate models were driven by Coupled Model Intercomparison Project Phase 5 Global Climate Models for historical and future (RCP8.5) periods. We analyse the three major seasons over the region, namely March–May, June–September, and October–December. Results indicate widespread robust changes in the mean intra-seasonal rainfall characteristics at 1.5 °C and 2 °C GWLs especially for the June–September and October–December seasons. The March–May season is projected to shift for both GWL scenarios with the season starting and ending early. During the June–September season, there is a robust indication of delayed onset, reduction in consecutive wet days and shortening of the length of rainy season over parts of the northern sector under 2 °C GWL. During the October–December season, the region is projected to have late-onset, delayed cessation, reduced consecutive wet days and a longer season over most of the equatorial region under the 2 °C GWL. These results indicate that it is crucial to limit the GWL to below 1.5 °C as the differences between the 1.5 °C and 2 °C GWLs in some cases exacerbates changes in the intra-seasonal rainfall characteristics over the Greater Horn of Africa
    corecore