6 research outputs found

    Frame-disrupting mutations elicit pre-mRNA accumulation independently of frame disruption

    Get PDF
    The T-cell receptor (TCR) and immunoglobulin (Ig) genes are unique among vertebrate genes in that they undergo programmed rearrangement, a process that allows them to generate an enormous array of receptors with different antigen specificities. While crucial for immune function, this rearrangement mechanism is highly error prone, often generating frameshift or nonsense mutations that render the rearranged TCR and Ig genes defective. Such frame-disrupting mutations have been reported to increase the level of TCRβ and Igµ pre-mRNA, suggesting the hypothesis that RNA processing is blocked when frame disruption is sensed. Using a chimeric gene that contains TCRβ sequences conferring this upregulatory response, we provide evidence that pre-mRNA upregulation is neither frame- nor translation-dependent; instead, several lines of evidence suggested that it is the result of disrupted cis elements necessary for efficient RNA splicing. In particular, we identify the rearranging VDJβ exon as being uniquely densely packed with exonic-splicing enhancers (ESEs), rendering this exon hypersensitive to mutational disruption. As the chimeric gene that we developed for these studies generates unusually stable nuclear pre-mRNAs that accumulate when challenged with ESE mutations, we suggest it can be used as a sensitive in vivo system to identify and characterize ESEs

    Boundary-independent polar nonsense-mediated decay

    No full text
    Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that degrades mRNAs containing premature termination (nonsense) codons. The second signal for this pathway in mammalian cells is an intron that must be at least ∼55 nucleotides downstream of the nonsense codon. Although the functional significance of this ‘–55 boundary rule’ is not known, it is widely thought to reflect the important role of an exon junction protein complex deposited just upstream of exon–exon junctions after RNA splicing. Here we report that a T-cell receptor (TCR)-β gene did not conform to this rule. Rather than a definitive boundary position, nonsense codons had a polar effect, such that nonsense codons distant from the terminal downstream intron triggered robust NMD and proximal nonsense codons caused modest NMD. We identified a region of the TCR-β gene that conferred this boundary-independent polar expression pattern on a heterologous gene. Collectively, our results suggest that TCR-β transcripts contain one or more sequence elements that elicit an unusual NMD response triggered by a novel second signal that ultimately causes boundary-independent polar regulation. TCR genes may have evolved this unique NMD response because they frequently acquire nonsense codons during normal development

    An alternative branch of the nonsense-mediated decay pathway

    No full text
    The T-cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC-bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense-mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRβ NMD, thereby distinguishing it from classical NMD. Depletion of the related factor UPF3a, by itself or in combination with UPF3b, also has no effect on TCRβ NMD. Mapping experiments revealed the identity of TCRβ sequences that elicit a switch to UPF3b dependence. This regulation is not a peculiarity of TCRβ, as we identified many wild-type genes, including one essential for NMD, that transcribe NMD-targeted mRNAs whose downregulation is little or not affected by UPF3a and UPF3b depletion. We propose that we have uncovered an alternative branch of the NMD pathway that not only degrades aberrant mRNAs but also regulates normal mRNAs, including one that participates in a negative feedback loop controlling the magnitude of NMD
    corecore