436 research outputs found

    Remission of severe restless legs syndrome and periodic limb movements in sleep after bilateral excision of multiple foot neuromas: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Restless legs syndrome is a sensorimotor neurological disorder characterized by an urge to move the legs in response to uncomfortable leg sensations. While asleep, 70 to 90 percent of patients with restless legs syndrome have periodic limb movements in sleep. Frequent periodic limb movements in sleep and related brain arousals as documented by polysomnography are associated with poorer quality of sleep and daytime fatigue. Restless legs syndrome in middle age is sometimes associated with neuropathic foot dysesthesias. The causes of restless legs syndrome and periodic limb movements in sleep are unknown, but the sensorimotor symptoms are hypothesized to originate in the central nervous system. We have previously determined that bilateral forefoot digital nerve impingement masses (neuromas) may be a cause of both neuropathic foot dysesthesias and the leg restlessness of restless legs syndrome. To the best of our knowledge, this case is the first report of bilateral foot neuromas as a cause of periodic limb movements in sleep.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian woman with severe restless legs syndrome and periodic limb movements in sleep and bilateral neuropathic foot dysesthesias was diagnosed as having neuromas in the second, third, and fourth metatarsal head interspaces of both feet. The third interspace neuromas represented regrowth (or 'stump') neuromas that had developed since bilateral third interspace neuroma excision five years earlier. Because intensive conservative treatments including repeated neuroma injections and various restless legs syndrome medications had failed, radical surgery was recommended. All six neuromas were excised. Leg restlessness, foot dysesthesias and subjective sleep quality improved immediately. Assessment after 18 days showed an 84 to 100 percent reduction of visual analog scale scores for specific dysesthesias and marked reductions of pre-operative scores of the Pittsburgh sleep quality index, fatigue severity scale, and the international restless legs syndrome rating scale (36 to 4). Polysomnography six weeks post-operatively showed improved sleep efficiency, a marked increase in rapid eye movement sleep, and marked reductions in hourly rates of both periodic limb movements in sleep with arousal (135.3 to 3.3) and spontaneous arousals (17.3 to 0).</p> <p>Conclusion</p> <p>The immediate and near complete remission of symptoms, the histopathology of the excised tissues, and the marked improvement in polysomnographic parameters documented six weeks after surgery together indicate that this patient's severe restless legs syndrome and periodic limb movements in sleep was of peripheral nerve (foot neuroma) origin. Further study of foot neuromas as a source of periodic limb movements in sleep and as a cause of sleep dysfunction in patients with or without concomitant restless legs syndrome, is warranted.</p

    Role of NADH Dehydrogenase (Ubiquinone) 1 alpha subcomplex 4-like 2 in clear cell renal cell carcinoma

    Get PDF
    PURPOSE We delineated the functions of the HIF1α target NADH Dehydrogenase (Ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) in ccRCC and characterized NDUFA4L2 as a novel molecular target for ccRCC treatment. EXPERIMENTAL DESIGN We evaluated normal kidney and ccRCC patient microarray and RNAseq data from Oncomine and The Cancer Genome Atlas (TCGA) for NDUFA4L2 mRNA levels and the clinical implications of high NDUFA4L2 expression. Additionally, we examined normal kidney and ccRCC patient tissue samples, human ccRCC cell lines, and murine models of ccRCC for NDUFA4L2 mRNA and protein expression. Utilizing shRNA, we performed NDUFA4L2 knockdown experiments and analyzed the proliferation, clonogenicity, metabolite levels, cell structure, and autophagy in ccRCC cell lines in culture. RESULTS We found that NDUFA4L2 mRNA and protein are highly expressed in ccRCC samples but undetectable in normal kidney tissue samples, and that NDUFA4L2 mRNA expression correlates with tumor stage and lower overall survival. Additionally, we demonstrated that NDUFA4L2 is a HIF1α target in ccRCC and that NDUFA4L2 knockdown has a profound anti-proliferative effect, alters metabolic pathways, and causes major stress in cultured RCC cells. CONCLUSIONS Collectively, our data show that NDUFA4L2 is a novel molecular target for ccRCC treatment

    CARM1 (PRMT4) acts as a transcriptional coactivator during retinoic acid-induced embryonic stem cell differentiation

    Get PDF
    Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at retinoic acid responsive elements (RAREs) and/or RA-responsive regions of RA-regulated genes. Coactivator-associated arginine methyltransferase 1 (CARM1, PRMT4) is a protein arginine methyltransferase that also functions as a transcriptional coactivator. Previous studies highlight CARM1’s importance in the differentiation of different cell types. We address CARM1 function during RA-induced differentiation of murine embryonic stem cells (mESCs) using shRNA lentiviral transduction and CRISPR/Cas9 technology to deplete CARM1 in mESCs. We identify CARM1 as a novel transcriptional coactivator required for the RA-associated decrease in Rex1 (Zfp42), and for the RA induction of a subset of RA-regulated genes, including CRABP2 and NR2F1 (Coup-TF1). Furthermore, CARM1 is required for mESCs to differentiate into extraembryonic endoderm in response to RA. We next characterize the epigenetic mechanisms that contribute to RA-induced transcriptional activation of CRABP2 and NR2F1 in mESCs and show for the first time that CARM1 is required for this activation. Collectively, our data demonstrate that CARM1 is required for transcriptional activation of a subset of RA target genes, and we uncover changes in the recruitment of Suz12 and the epigenetic H3K27me3 and H3K27ac marks at gene regulatory regions for CRABP2 and NR2F1 during RA-induced differentiation

    Effects of AM80 Compared to AC261066 in a High Fat Diet Mouse Model of Liver Disease

    Full text link
    The roles of retinoids in nonalcoholic fatty liver disease (NAFLD) remain unclear and a better understanding may lead to therapies that prevent or limit NAFLD progression. We examined the actions of retinoic acid receptor (RAR) agonists- AM80 for RARαand AC261066 for RARβ2- in a murine model of NAFLD. We fed wild type C57Bl/6 mice a chow or a 45% high fat diet (HFD) for 12 weeks, followed by 4 additional weeks with the HFD+AM80; HFD +AC261066; or HFD. The HFD+AM80 group showed greater hyperglycemia and glucose intolerance compared to other groups. Histopathological evaluation of the livers showed the highest degree of steatosis, triglycerides levels, and inflammation, assessed by F4/80 staining, in the HFD+AM80-treated compared to the HFD, the HFD+AC261066, and chow-fed mice. Liver vitamin A (retinol (ROL)) and retinyl palmitate levels were markedly lower in all HFD groups compared to chow-fed controls. HFD+AC261066-treated mice showed higher levels of a key intracellular ROL transporter, retinol-binding protein-1 (RBP1) compared to the HFD and HFD+AM80 groups. In conclusion, these data demonstrate that the selective RARαagonist AM80 exacerbates HFD-induced NAFLD and hyperglycemia. These findings should inform future studies examining the therapeutic potential of RAR agonists in HFDrelated disorders

    Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines

    Get PDF
    International audienceThe phytochemical resveratrol, found in grapes, berries and peanuts, has been found to possess cancer chemopreventive effects by inhibiting diverse cellular events associated with tumour initiation, promotion and progression. Resveratrol is also a phyto-oestrogen, binds to and activates oestrogen receptors that regulate the transcription of oestrogen-responsive target genes such as the breast cancer susceptibility genes BRCA1 and BRCA2. We investigated the effects of resveratrol on BRCA1 and BRCA2 expression in human breast cancer cell lines (MCF7, HBL 100 and MDA-MB 231) using quantitative real-time RT-PCR, and by perfusion chromatography of the proteins. All cell lines were treated with 30 microM resveratrol. The expressions of BRCA1 and BRCA2 mRNAs were increased although no change in the expression of the proteins were found. These data indicate that resveratrol at 30 micro M can increase expression of genes involved in the aggressiveness of human breast tumour cell lines

    All-trans retinoic acid (ATRA)-induced TFEB expression is required for myeloid differentiation in acute promyelocytic leukemia (APL)

    Get PDF
    © 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Objective: In acute promyelocytic leukemia (APL), normal retinoid signaling is disrupted by an abnormal PML-RARα fusion oncoprotein, leading to a block in cell differentiation. Therapeutic concentrations of all-trans-retinoic acid (ATRA) can restore retinoid-induced transcription and promote degradation of the PML-RARα protein. Autophagy is a catabolic pathway that utilizes lysosomal machinery to degrade intracellular material and facilitate cellular re-modeling. Recent studies have identified autophagy as an integral component of ATRA-induced myeloid differentiation. Methods: As the molecular communication between retinoid signaling and the autophagy pathway is not defined, we performed RNA sequencing of NB4 APL cells treated with ATRA and examined autophagy-related transcripts. Results: ATRA altered the expression of >80 known autophagy-related transcripts, including the key transcriptional regulator of autophagy and lysosomal biogenesis, TFEB (11.5-fold increase). Induction of TFEB and its transcriptional target, sequestosome 1 (SQSTM1, p62), is reduced in ATRA-resistant NB4R cells compared to NB4 cells. TFEB knockdown in NB4 cells alters the expression of transcriptional targets of TFEB and reduces CD11b transcript levels in response to ATRA. Conclusions: We show for the first time that TFEB plays an important role in ATRA-induced autophagy during myeloid differentiation and that autophagy induction potentiates leukemic cell differentiation (Note: this study includes data obtained from NCT00195156, https://clinicaltrials.gov/show/NCT00195156)

    NDUFA4L2 reduces mitochondrial respiration resulting in defective lysosomal trafficking in clear cell renal cell carcinoma

    Get PDF
    In clear cell renal cell carcinoma (ccRCC), activation of hypoxic signaling induces NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) expression. Over 90% of ccRCCs exhibit overexpression of NDUFA4L2, which we previously showed contributes to ccRCC proliferation and survival. The function of NDUFA4L2 in ccRCC has not been fully elucidated. NDUFA4L2 was reported to reduce mitochondrial respiration via mitochondrial complex I inhibition. We found that NDUFA4L2 expression in human ccRCC cells increases the extracellular acidification rate, indicative of elevated glycolysis. Conversely, NDUFA4L2 expression in non-cancerous kidney epithelial cells decreases oxygen consumption rate while increasing extracellular acidification rate, suggesting that a Warburg-like effect is induced by NDUFA4L2 alone. We performed mass-spectrometry (MS)-based proteomics of NDUFA4L2 associated complexes. Comparing RCC4-P (parental) ccRCC cells with RCC4 in which NDUFA4L2 is knocked out by CRISPR-Cas9 (RCC4-KO-643), we identified 3,215 proteins enriched in the NDUFA4L2 immunoprecipitates. Among the top-ranking pathways were "Metabolic Reprogramming in Cancer" and "Glycolysis Activation in Cancer (Warburg Effect)." We also show that NDUFA4L2 enhances mitochondrial fragmentation, interacts with lysosomes, and increases mitochondrial-lysosomal associations, as assessed by high-resolution fluorescence microscopy and live cell imaging. We identified 161 lysosomal proteins, including Niemann-Pick Disease Type C Intracellular Cholesterol Transporters 1 and 2 (NPC1, NPC2), that are associated with NDUFA4L2 in RCC4-P cells. RCC4-P cells have larger and decreased numbers of lysosomes relative to RCC4 NDUFA4L2 knockout cells. These findings suggest that NDUFA4L2 regulates mitochondrial-lysosomal associations and potentially lysosomal size and abundance. Consequently, NDUFA4L2 may regulate not only mitochondrial, but also lysosomal functions in ccRCC

    Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene

    Get PDF
    INTRODUCTION:Increased estrogen level has been regarded to be a risk factor for breast cancer. However, estrogen has also been shown to induce the expression of the tumor suppressor gene, BRCA1. Upregulation of BRCA1 is thought to be a feedback mechanism for controlling DNA repair in proliferating cells. Estrogens enhance transcription of target genes by stimulating the association of the estrogen receptor (ER) and related coactivators to estrogen response elements or to transcription complexes formed at activator protein (AP)-1 or specificity protein (Sp)-binding sites. Interestingly, the BRCA1 gene lacks a consensus estrogen response element. We previously reported that estrogen stimulated BRCA1 transcription through the recruitment of a p300/ER-alpha complex to an AP-1 site harbored in the proximal BRCA1 promoter. The purpose of the study was to analyze the contribution of cis-acting sites flanking the AP-1 element to basal and estrogen-dependent regulation of BRCA1 transcription.METHODS:Using transfection studies with wild-type and mutated BRCA1 promoter constructs, electromobility binding and shift assays, and DNA-protein interaction and chromatin immunoprecipitation assays, we investigated the role of Sp-binding sites and cAMP response element (CRE)-binding sites harbored in the proximal BRCA1 promoter.RESULTS:We report that in the BRCA1 promoter the AP-1 site is flanked upstream by an element (5'-GGGGCGGAA-3') that recruits Sp1, Sp3, and Sp4 factors, and downstream by a half CRE-binding motif (5'-CGTAA-3') that binds CRE-binding protein. In ER-alpha-positive MCF-7 cells and ER-alpha-negative Hela cells expressing exogenous ER-alpha, mutation of the Sp-binding site interfered with basal and estrogen-induced BRCA1 transcription. Conversely, mutation of the CRE-binding element reduced basal BRCA1 promoter activity but did not prevent estrogen activation. In combination with the AP-1/CRE sites, the Sp-binding domain enhanced the recruitment of nuclear proteins to the BRCA1 promoter. Finally, we report that the MEK1 (mitogen-activated protein kinase kinase-1) inhibitor PD98059 attenuated the recruitment of Sp1 and phosphorylated ER-alpha, respectively, to the Sp and AP-1 binding element.CONCLUSION:These cumulative findings suggest that the proximal BRCA1 promoter segment comprises cis-acting elements that are targeted by Sp-binding and CRE-binding proteins that contribute to regulation of BRCA1 transcription.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Novel therapeutic approach: organic arsenical (melarsoprol) alone or with all-trans -retinoic acid markedly inhibit growth of human breast and prostate cancer cells in vitro and in vivo

    Get PDF
    The organic arsenical known as melarsoprol (Mel-B) is used to treat African trypanosomiasis. Recently, another arsenical, As2O3was shown to be effective in treatment of acute promyelocytic leukaemia. We have investigated the anti-tumour activities of Mel-B either with or without all-trans -retinoic acid (ATRA) using the MCF-7 human breast cancer cells, as well as the PC-3 and DU 145 human prostate cancer cells both in vitro and in vivo. The antiproliferative effects of Mel-B and/or ATRA against breast and prostate cancer were tested in vitro using clonogenic assays and in vivo in triple immunodeficient mice. Furthermore, the mechanism of action of these compounds was studied by examining the cell cycle, levels of bcl-2, apoptosis and antiproliferative potency using a pulse-exposure assay. Clonogenic assays showed that the cancer cell lines were sensitive to the inhibitory effect of Mel-B (effective dose that inhibited 50% clonal growth [ED50]: 7 × 10−9M for MCF-7, 2 × 10−7M for PC-3, 3 × 10−7M for DU145 cells. Remarkably, the combination of Mel-B and ATRA had an enhanced antiproliferative activity against all three cancer cell lines. Furthermore, the combination of Mel-B and ATRA induced a high level of apoptosis in all three cell lines. Treatment of PC-3 and MCF-7 tumours growing in triple immunodeficient mice with Mel-B and ATRA either alone or in combination markedly retarded tumour size and weight of the tumours without major side-effects. In conclusion, our results suggest that either Mel-B alone or with ATRA may be a useful, novel therapy for breast and prostate cancers. © 2000 Cancer Research Campaig

    Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas

    Get PDF
    Poorly differentiated thyroid carcinomas (PDTC) represent a heterogeneous, aggressive entity, presenting features that suggest a progression from well-differentiated carcinomas. To elucidate the mechanisms underlying such progression and identify novel therapeutic targets, we assessed the genome-wide expression in normal and tumour thyroid tissues.info:eu-repo/semantics/publishe
    corecore