1,008 research outputs found

    Role of magnetic resonance in characterising extrahepatic cholangiocarcinomas

    Get PDF
    PURPOSE: The purpose of this study was to evaluate the accuracy of magnetic resonance (MR) in correctly locating and characterising biliary strictures in patients affected by extrahepatic cholangiocarcinoma, identify findings suggestive of the disease, identify lesions with similar MR features and possible criteria for differential diagnosis and establish prospective MR accuracy in diagnosis of malignant obstruction of extrahepatic bile ducts. MATERIALS AND METHODS: We retrospectively reviewed the MR examinations of 39 patients affected by extrahepatic cholangiocarcinoma confirmed by histology or cytology. The studies were evaluated for the following parameters: site of obstruction (hilar, proximal or distal), presence of intra- or extrahepatic dilation of bile ducts, morphology of ductal stenosis (gradual tapering or abrupt ending), morphology of the lesion (mass like or circumferential), dimension, signal intensity before contrast medium administration and lesion enhancement after administration of contrast medium. Finally, we assessed the most useful sequence for the diagnosis. In order to evaluate MR accuracy in the diagnosis of malignant obstruction of extrahepatic bile ducts, we prospectively reviewed MR examinations of 74 patients affected by obstructive jaundice (55 malignant lesions and 19 inflammatory lesions). MR diagnosis was compared with histology or cytology considered as the gold standard. RESULTS: MR allowed identification and localisation of 41/41 extrahepatic cholangiocarcinomas. Fifty-four percent of the lesions showed gradual duct tapering; the remaining lesions showed an abrupt ending. Fifty-six percent of the lesions appeared as a circumferential thickening (infiltrative growth); the remaining lesions had a mass-like appearance (expansile growth). Most lesions were hypo- (49%) or isointense (49%) in T1-weighted sequences and hyper- (49%) or isointense (51%) in T2-weighted sequences. Ninety-five percent of the lesions did not enhance significantly in the arterial phase while 98% showed late enhancement (10 min). The most diagnostic sequence (in 76% of cases) was the late-phase gradient-echo (GRE) T1 fat-saturated sequence. MR had good sensitivity (91%) but poor specificity (47%) in characterising stenosis as malignant, given the large number (10/19) of benign lesions evaluated as neoplastic lesions. CONCLUSIONS: MR almost always identified the cause of stenosis and suggested its neoplastic nature if it exhibited a mass-like appearance (extraductal or growing into the choledochus). On the other hand, lesions with parietal thickening, particularly if smaller than 1 cm, require endoscopic cytology or histology because of the high risk of unnecessary procedures for benign lesions

    Energy and symmetry of dddd excitations in undoped layered cuprates measured by Cu L3L_3 resonant inelastic x-ray scattering

    Get PDF
    We measured high resolution Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS) of the undoped cuprates La2_2CuO4_4, Sr2_2CuO2_2Cl2_2, CaCuO2_2 and NdBa2_2Cu3_3O6_6. The dominant spectral features were assigned to dddd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used them to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3dd states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the single ion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dddd excitation energies carries important consequences for the physics of high TcT_c superconductors. On one hand, having found that the minimum energy of orbital excitation is always 1.4\geq 1.4 eV, i.e., well above the mid-infrared spectral range, leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dddd excitations on the superconducting gap in cuprates.Comment: 22 pages, 11 figures, 1 tabl

    POLYCICLIC AROMATIC HYDROCARBON CONTAMINATION IN WELS CATFISH (SILURUS GLANIS) CAUGHT IN THE PO RIVER BASIN

    Get PDF
    Aim of this investigation was to evaluate IPA contamination in samples of Silurus glanis caught in Po river. N. 54 muscle samples were collected and analyzed. Five samples exceeded the maximum limit set by CE Regulation 1881/2006 for Benzo(a)pirene. Therefore, 10% of Silurus fished turned out to be not adequate and potentially harmful for consumers. In order to estimate the real risk for human health it is necessary to enforce this study, correlating the results with the effective fish consumption

    Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors

    Get PDF
    In high Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons virtually jump from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favored by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic x-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference

    Enhancing Nanoparticle-Based Visible Detection by Controlling the Extent of Aggregation

    Get PDF
    Visible indication based on the aggregation of colloidal nanoparticles (NPs) is highly advantageous for rapid on-site detection of biological entities, which even untrained persons can perform without specialized instrumentation. However, since the extent of aggregation should exceed a certain minimum threshold to produce visible change, further applications of this conventional method have been hampered by insufficient sensitivity or certain limiting characteristics of the target. Here we report a signal amplification strategy to enhance visible detection by introducing switchable linkers (SLs), which are designed to lose their function to bridge NPs in the presence of target and control the extent of aggregation. By precisely designing the system, considering the quantitative relationship between the functionalized NPs and SLs, highly sensitive and quantitative visible detection is possible. We confirmed the ultrahigh sensitivity of this method by detecting the presence of 20 fM of streptavidin and fewer than 100 CFU/mL of Escherichia coli

    Intense paramagnon excitations in a large family of high-temperature superconductors

    Full text link
    In the search for the mechanism of high-temperature superconductivity, intense research has been focused on the evolution of the spin excitation spectrum upon doping from the antiferromagnetic insulating to the superconducting states of the cuprates. Because of technical limitations, the experimental investigation of doped cuprates has been largely focused on low-energy excitations in a small range of momentum space. Here we use resonant inelastic x-ray scattering to show that a large family of superconductors, encompassing underdoped YBa2_2Cu4_4O8_8 and overdoped YBa2_2Cu3_3O7_{7}, exhibits damped spin excitations (paramagnons) with dispersions and spectral weights closely similar to those of magnons in undoped cuprates. %The results are in excellent agreement with the spin excitations obtained by exact diagonalization of the tJ\bf t-J Hamiltonian on finite-sized clusters. The comprehensive experimental description of this surprisingly simple spectrum permits quantitative tests of magnetic Cooper pairing models. A numerical solution of the Eliashberg equations for the magnetic spectrum of YBa2_2Cu3_3O7_{7} reproduces its superconducting transition temperature within a factor of two, a level of agreement comparable to Eliashberg theories of conventional superconductors.Comment: Main text (11 pages, 4 figures) + supplementary information (4 pages, 4 figures, 1 table). An updated version will appear in Nature Physic
    corecore