135 research outputs found

    Similarity, precedent and argument from analogy

    Get PDF
    In this paper, it is shown (1) that there are two schemes for argument from analogy that seem to be competitors but are not, (2) how one of them is based on a distinctive type of similarity premise, (3) how to analyze the notion of similarity using story schemes illustrated by some cases, (4) how arguments from precedent are based on arguments from analogy, and in many instances arguments from classification, and (5) that when similarity is defined by means of episode schemes, we can get a clearer idea of how it integrates with the use of argument from classification and argument from precedent in case-based reasoning by using a dialogue structure

    Structural diversity in binary nanoparticle superlattices

    Full text link
    Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures - that is, 'bottom up' assembly - is a theme that runs through chemistry, biology and material science. Bacteria(1), macromolecules(2) and nanoparticles(3) can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)(3-7) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation(3,8,9), and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres(10,11). Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62551/1/nature04414.pd

    Omission of Radiotherapy in Primary Mediastinal B-Cell Lymphoma: IELSG37 Trial Results

    Get PDF
    \ua9 2024 by American Society of Clinical Oncology. PURPOSE The role of consolidation radiotherapy in patients with primary mediastinal B-cell lymphoma (PMBCL) is controversial. METHODS The IELSG37 trial, a randomized noninferiority study, aimed to assess whether irradiation can be omitted in patients with PMBCL with complete metabolic response (CMR) after induction immunochemotherapy. The primary end point was progression-free survival (PFS) at 30 months after random assignment. Patients with CMR were randomly assigned to observation or consolidation radiotherapy (30 Gy). With a noninferiority margin of 10% (assuming a 30-month PFS of 85% in both arms), a sample size of 540 patients was planned with 376 expected to be randomly assigned. RESULTS The observed events were considerably lower than expected; therefore, primary end point analysis was conducted when ≥95% of patients were followed for ≥30 months. Of the 545 patients enrolled, 268 were in CMR after induction and were randomly assigned to observation (n = 132) or radiotherapy (n = 136). The 30-month PFS was 96.2% in the observation arm and 98.5% in the radiotherapy arm, with a stratified hazard ratio of 1.47 (95% CI, 0.34 to 6.28) and absolute risk difference of 0.68% (95% CI, -0.97 to 7.46). The 5-year overall survival (OS) was 99% in both arms. Nonrandomized patients were managed according to local policies. Radiotherapy was the only treatment in 86% of those with Deauville score (DS) 4 and in 57% of those with DS 5. The 5-year PFS and OS of patients with DS 4 (95.8% and 97.5%, respectively) were not significantly different from those of randomly assigned patients. Patients with DS5 had significantly poorer 5-year PFS and OS (60.3% and 74.6%, respectively). CONCLUSION This study, the largest randomized trial of radiotherapy in PMBCL, demonstrated favorable outcomes in patients achieving CMR with no survival impairment for those omitting irradiation

    A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations

    Get PDF
    Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours

    Directing Cluster Formation of Au Nanoparticles from Colloidal Solution

    Full text link
    Discrete clusters of closely spaced Au nanoparticles can be utilized in devices from photovoltaics to molecular sensors because of the formation of strong local electromagnetic field enhancements when illuminated near their plasmon resonance. In this study, scalable, chemical self-organization methods are shown to produce Au nanoparticle clusters with uniform nanometer interparticle spacing. The performance of two different methods, namely electrophoresis and diffusion, for driving the attachment of Au nanoparticles using a chemical cross-linker on chemically patterned domains of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films are evaluated. Significantly, electrophoresis is found to produce similar surface coverage as diffusion in 1/6th of the processing time with an ~2-fold increase in the number of Au nanoparticles forming clusters. Furthermore, average interparticle spacing within Au nanoparticle clusters was found to decrease from 2-7 nm for diffusion deposition to approximately 1-2 nm for electrophoresis deposition, and the latter method exhibited better uniformity with most clusters appearing to have about 1 nm spacing between nanoparticles. The advantage of such fabrication capability is supported by calculations of local electric field enhancements using electromagnetic full-wave simulations from which we can estimate surface-enhanced Raman scattering (SERS) enhancements. In particular, full-wave results show that the maximum SERS enhancement, as estimated here as the fourth power of the local electric field, increases by a factor of 100 when the gap goes from 2 to 1 nm, reaching values as large as 10(10), strengthening the usage of electrophoresis versus diffusion for the development of molecular sensors

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link
    • …
    corecore