70 research outputs found

    3,3\u27-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species.

    Get PDF
    CONTEXT: A major problem in the treatment of cancer is the development of toxic side effects and resistance to chemotherapy. The use of plant compounds to overcome resistance and prevent toxicity is a potential strategy for treatment. OBJECTIVE: We evaluated whether 3,3\u27-diindolylmethane (DIM) enhanced the sensitivity of breast cancer cells to docetaxel (DOC). MATERIALS AND METHODS: MDA-MB231 and Sk-BR-3 cells were treated with and without 25 or 50 µM of DIM and 1 nM of DOC for 48 and 72 h, respectively. MTT assay was used to measure cell survival. Apoptosis and intracellular reactive oxygen species (ROS) were determined by flow cytometry. The expression of proteins regulating ROS production and apoptosis was evaluated by immunoblotting technique. RESULTS: Combining 25 µM of DIM with 1 nM DOC decreased cell survival by 42% in MDA-MB231 cells and 59% in Sk-BR-3 cells compared to control, DIM, or DOC (p ≤ 0.05). The combination treatment increased apoptosis over 20% (p ≤ 0.01) in both cell lines, which was associated with decreased Bcl-2, increased Bax, cleaved PARP and activated JNK (p ≤ 0.01). ROS production increased by 46.5% in the MDA-MB231 and 29.3% in Sk-BR-3 cells with the combination compared to DIM or DOC alone. Pretreating cells with N-acetyl-cysteine or Tiron abrogated the anti-survival effect of the combination. The increase in ROS was associated with a 54% decrease in MnSOD and 47% increase in NOX2 protein compared to the other groups. CONCLUSIONS: Our findings indicated that DIM enhances the sensitivity of breast cancer cells to DOC treatment by increasing ROS, which led to decreased cell survival and apoptosis

    Surface-enhanced Raman Spectroscopy Facilitates the Detection of Microplastics < 1 μm in the Environment

    Get PDF
    Micro- and nanoplastics are considered one of the top pollutants that threaten the environment, aquatic life and mammalian (including human) health. Unfortunately, the development of uncomplicated but reliable analytical methods that are sensitive to individual microplastic particles, with sizes smaller than 1 μm, remains incomplete. Here, we demonstrate the detection and identification of (single) micro- and nanoplastics, by using surface-enhanced Raman spectroscopy (SERS), with Klarite substrates. Klarite is an exceptional SERS substrate; it is shaped as a dense grid of inverted pyramidal cavities, made of gold. Numerical simulations demonstrate that these cavities (or pits) strongly focus incident light into intense hotspots. We show that Klarite has the potential to facilitate the detection and identification of synthesized and atmospheric/aquatic microplastic (single) particles, with sizes down to 360 nm. We find enhancement factors of up to two orders of magnitude for polystyrene analytes. In addition, we detect and identify microplastics with sizes down to 450 nm on Klarite, with samples extracted from ambient, airborne particles. Moreover, we demonstrate Raman mapping as a fast detection technique for sub-micron microplastic particles. The results show that SERS with Klarite is a facile technique that has the potential to detect and systematically measure nanoplastics in the environment. This research is an important step towards detecting nanoscale plastic particles that may cause toxic effects to mammalian and aquatic life when present in high concentrations

    Enhanced bioremediation of triclocarban-contaminated soil by Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 immobilized on biochar and microbial community response

    Get PDF
    Triclocarban (TCC), an emerging organic contaminant (EOC), has become a severe threat to soil microbial communities and ecological security. Here, the TCC-degrading strain Rhodococcus rhodochrous BX2 and DCA-degrading strain Pseudomonas sp. LY-1 (together referred to as TC1) were immobilized on biochar to remove TCC and its intermediates in TCC-contaminated soil. High-throughput sequencing was used to investigate the microbial community structure in TCC-contaminated soil. Analysis of co-occurrence networks was used to explore the mutual relationships among soil microbiome members. The results showed that the immobilized TC1 significantly increased the removal efficiency of TCC from 84.7 to 92.7% compared to CK (no TC1 cells on biochar) in 10 mg/L TCC liquid medium. The utilization of immobilized TC1 also significantly accelerated the removal of TCC from contaminated soil. Microbial community analysis revealed the crucial microorganisms and their functional enzymes participating in TCC degradation in soil. Moreover, the internal labor division patterns and connections of TCC-degrading microbes, with a focus on strains BX2 and LY-1, were unraveled by co-occurrence networks analysis. This work provides a promising strategy to facilitate the bioremediation of TCC in soil, which has potential application value for sustainable biobased economies

    CD180 Ligation Inhibits TLR7- and TLR9-Mediated Activation of Macrophages and Dendritic Cells Through the Lyn-SHP-1/2 Axis in Murine Lupus

    Get PDF
    Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, can lead to hyper-activation of immune cells, including macrophages and DCs, subsequently contributes to the pathogenesis of SLE. CD180, a TLR-like protein, is specifically involved in the development and activation of immune cells. Our previous study and others have reported that CD180-negative B cells are dramatically increased in SLE patients and responsible for the production of auto-antibodies. However, the mode of CD180 expression on macrophages and DCs in SLE remains unclear and the role of CD180 on regulating TLR7- and TLR9-mediated activation of macrophages and DCs are largely unknown. In the present study, we found that the percentages of CD180-negative macrophages and DCs were both increased in SLE patients and lupus-prone MRL/lpr mice compared with healthy donors and wild-type mice, respectively. Notably, ligation of CD180 significantly inhibited the activation of TLR7 and TLR9 signaling pathways in macrophages and DCs through the Lyn-SHP-1/2 axis. What's more, injection of anti-CD180 Ab could markedly ameliorate the lupus-symptoms of imiquimod-treated mice and lupus-prone MRL/lpr mice through inhibiting the activation of macrophages and DCs. Collectively, our results highlight a critical role of CD180 in regulating TLR7- and TLR9-mediated activation of macrophages and DCs, hinting that CD180 can be regarded as a potential therapeutic target for SLE treatment

    Comparative analysis of the transcriptome across distant species

    Get PDF
    The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters

    3,3′-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species

    No full text
    Context: A major problem in the treatment of cancer is the development of toxic side effects and resistance to chemotherapy. The use of plant compounds to overcome resistance and prevent toxicity is a potential strategy for treatment. Objective: We evaluated whether 3,3′-diindolylmethane (DIM) enhanced the sensitivity of breast cancer cells to docetaxel (DOC). Materials and methods: MDA-MB231 and Sk-BR-3 cells were treated with and without 25 or 50 µM of DIM and 1 nM of DOC for 48 and 72 h, respectively. MTT assay was used to measure cell survival. Apoptosis and intracellular reactive oxygen species (ROS) were determined by flow cytometry. The expression of proteins regulating ROS production and apoptosis was evaluated by immunoblotting technique. Results: Combining 25 µM of DIM with 1 nM DOC decreased cell survival by 42% in MDA-MB231 cells and 59% in Sk-BR-3 cells compared to control, DIM, or DOC (p ≤ 0.05). The combination treatment increased apoptosis over 20% (p ≤ 0.01) in both cell lines, which was associated with decreased Bcl-2, increased Bax, cleaved PARP and activated JNK (p ≤ 0.01). ROS production increased by 46.5% in the MDA-MB231 and 29.3% in Sk-BR-3 cells with the combination compared to DIM or DOC alone. Pretreating cells with N-acetyl-cysteine or Tiron abrogated the anti-survival effect of the combination. The increase in ROS was associated with a 54% decrease in MnSOD and 47% increase in NOX2 protein compared to the other groups. Conclusions: Our findings indicated that DIM enhances the sensitivity of breast cancer cells to DOC treatment by increasing ROS, which led to decreased cell survival and apoptosis

    Wide-View And Fast-Response Uniform Standing Helix Cholesteric Lcd

    No full text
    We develop an experimentally validated numerical simulation model to characterize the electro-optic properties of uniform standing helix (USH) cholesteric liquid crystal displays. Based on the proposed numerical model, the viewing angle properties are analyzed by taking the optical polarization rotation effect into consideration. Furthermore, we propose two compensation schemes to widen the viewing angle of an USH display and achieve contrast ratio \u3e100:1 over 80° viewing cone

    Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array

    No full text
    Color-converted micro-LED displays consist of a mono-color micro-LED array and color conversion materials to achieve full color, while relieving the burden of epitaxial growth of three-color micro-LEDs. However, it usually suffers from low efficiency and color crosstalk due to the limited optical density of color conversion materials. With funnel-tube array, the optical efficiency of the color-converted micro-LED display can be improved by ~3X, while the crosstalk is eliminated. After optimization of the tapper angle, the ambient contrast ratio is also improved due to higher light intensity
    corecore