26 research outputs found

    Searching for ER and/or NR-like dark matter signals with the especially low background liquid helium TPCs

    Full text link
    In the Dark Matter (DM) direct detection community, the absence of convincing signals has become a ``new normal'' for decades. Among other possibilities, the ``new normal'' might indicate that DM-matter interactions could generate not only the hypothetical NR (Nuclear Recoil) events but also the ER (Electron Recoil) ones, which have often been tagged as backgrounds historically. Further, we argue that ER and NR-like DM signals could co-exist in a DM detector's same dataset. So in total, there would be three scenarios we can search for DM signals: (i) ER excess only, (ii) NR excess only, and (iii) ER and NR excesses combined. To effectively identify any possible DM signal under the three scenarios, a DM detector should (a) have the minimum ER and NR backgrounds and (b) be capable of discriminating ER events from NR ones. Accordingly, we introduce the newly established project, ALETHEIA, which implements liquid helium-filled TPCs (Time Projection Chamber) in hunting for DM. Thanks to the nearly single-digit number of ER and NR backgrounds on 1 ton*yr exposure, presumably, the ALETHEIA detectors should be able to identify any form of DM-induced excess in its ROI (Research Of Interest). As far as we know, ALETHEIA is the first DM direct detection experiment claiming such an inclusive search; conventional detectors search DM mainly on the ``ER excess only'' and/or the ``NR excess only'' channel, not the ``ER and NR excesses combined'' channel. In addition, we introduce a preliminary scheme to one of the most challenging R\&D tasks, transmitting 500+ kV into a 4 K LHe detector

    Conceptual design and progress of transmitting \sim MV DC HV into 4 K LHe detectors

    Full text link
    A dual-phase TPC (Time Projection Chamber) is more advanced in characterizing an event than a single-phase one because it can, in principle, reconstruct the 3D (X-Y-Z) image of the event, while a single-phase detector can only show a 2D (X-Y) picture. As a result, more enriched physics is expected for a dual-phase detector than a single-phase one. However, to build such a detector, DC HV (High Voltage) must be delivered into the chamber (to have a static electric field), which is a challenging task, especially for an LHe detector due to the extremely low temperature, \sim 4 K, and the very high voltage, \sim MV (Million Volts). This article introduces a convincing design for transmitting \sim MV DC into a 4 K LHe detector. We also report the progress of manufacturing a 100 kV DC feedthrough capable of working at 4 K. Surprisingly, we realized that the technology we developed here might be a valuable reference to the scientists and engineers aiming to build residential bases on the Moon or Mars

    Expression, purification and characterization of the Lily symptomless virus coat protein from Lanzhou Isolate

    Get PDF
    Background: Lily symptomless virus (LSV) is widespread in many countries where lily are grown or planted, and causes severe economic losses in terms of quantity and quality of flower and bulb production. To study the structure-function relationship of coat protein (CP) of LSV, to investigate antigenic relationships between coat protein subunits or intact virons, and to prepare specific antibodies against LSV, substantial amounts of CP protein are needed. Results: Thus, full-length cDNA of LSV coat protein was synthesized and amplified by RT-PCR from RNA isolated from LSV Lanzhou isolate. The extended 33.6 kDa CP was cloned and expressed prokaryoticly and then purified by Ni-ion affinity chromatography. Its identity and antigenicity of recombinant CP were identified on Western-blotting by using the prepared anti-LSV antibodies. Conclusions: The results indicate that fusion CP maintains its native antigenicity and specificity, providing a good source of antigen in preparation of LSV related antibodies. Detailed structural analysis of a pure recombinant CP should allow a better understanding of its role in cell attachment and LSV tropism. This investigation to LSV should provide some specific antibodies and aid to development a detection system for LSV diagnostics and epidemiologic surveys

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe
    corecore