65 research outputs found
Neural-Symbolic VideoQA: Learning Compositional Spatio-Temporal Reasoning for Real-world Video Question Answering
Compositional spatio-temporal reasoning poses a significant challenge in the
field of video question answering (VideoQA). Existing approaches struggle to
establish effective symbolic reasoning structures, which are crucial for
answering compositional spatio-temporal questions. To address this challenge,
we propose a neural-symbolic framework called Neural-Symbolic VideoQA
(NS-VideoQA), specifically designed for real-world VideoQA tasks. The
uniqueness and superiority of NS-VideoQA are two-fold: 1) It proposes a Scene
Parser Network (SPN) to transform static-dynamic video scenes into Symbolic
Representation (SR), structuralizing persons, objects, relations, and action
chronologies. 2) A Symbolic Reasoning Machine (SRM) is designed for top-down
question decompositions and bottom-up compositional reasonings. Specifically, a
polymorphic program executor is constructed for internally consistent reasoning
from SR to the final answer. As a result, Our NS-VideoQA not only improves the
compositional spatio-temporal reasoning in real-world VideoQA task, but also
enables step-by-step error analysis by tracing the intermediate results.
Experimental evaluations on the AGQA Decomp benchmark demonstrate the
effectiveness of the proposed NS-VideoQA framework. Empirical studies further
confirm that NS-VideoQA exhibits internal consistency in answering
compositional questions and significantly improves the capability of
spatio-temporal and logical inference for VideoQA tasks
Influence of active power output and control parameters of full-converter wind farms on sub-synchronous oscillation characteristics in weak grids
Active power outputs of a wind farm connected to a weak power grid greatly affect the stability of grid-connected voltage source converter (VSC) systems. This paper studies the impact of active power outputs and control parameters on the subsynchronous oscillation characteristics of full-converter wind farms connected weak power grids. Eigenvalue and participation factor analysis was performed to identify the dominant oscillation modes of the system under consideration. The impact of active power output and control parameters on the damping characteristics of subsynchronous oscillation is analysed with the eigenvalue method. The analysis shows that when the phase-locked loop (PLL) proportional gain is high, the subsynchronous oscillation damping characteristics are worsened as the active power output increases. On the contrary, when the PLL proportional gain is small, the subsynchronous oscillation damping characteristics are improved as the active power output increases. By adjusting the control parameters in the PLL and DC link voltage controllers, system stability can be improved. Time-domain results verify the analysis and the finding
Reliability Assessment Model for Industrial Control System Based on Belief Rule Base
This paper establishes a novel reliability assessment method for industrial control system (ICS). Firstly, the qualitative and quantitative information were integrated by evidential reasoning(ER) rule. Then, an ICS reliability assessment model was constructed based on belief rule base (BRB). In this way, both expert experience and historical data were fully utilized in the assessment. The model consists of two parts, a fault assessment model and a security assessment model. In addition, the initial parameters were optimized by covariance matrix adaptation evolution strategy (CMA-ES) algorithm, making the proposed model in line with the actual situation. Finally, the proposed model was compared with two other popular prediction methods through case study. The results show that the proposed method is reliable, efficient and accurate, laying a solid basis for reliability assessment of complex ICSs
Parameter design oriented analysis of the current control stability of the weak-grid-tied VSC
This paper studies the dynamic behaviors of weak-grid-tied VSCs with simplified transfer functions, which provides an accurate stability analysis and useful indications for tuning system parameters. A reduced-order multi-input multi-output (MIMO) transfer function that contains four single-input single-output (SISO) transfer functions for the weak-grid-tied VSC is first presented. It is found that the four SISO transfer functions share the same equivalent open-loop transfer function, i.e., the same stability conclusion. The Bode plots of the equivalent open-loop transfer function show that the inner current loop behaves as a band-pass filter whose maximum gain is approximately at the frequency of the PLL's bandwidth. By stability criterion, the harmonic amplification and instability occur when its maximum gain exceeds 0dB caused by high PLL's bandwidth, large grid impedance or high active power. It is also found that the target system is less stable when it works as an inverter than as a rectifier, due to the risk of the local positive feedback in the inverter mode. An effective criterion is further proposed to guide the selection of a proper PLL's bandwidth to ensure the stability of the VSC system. Simulation results validate the correctness of the analysis and the efficacy of the criterion
Class Balanced Similarity-Based Instance Transfer Learning for Botnet Family Classification
The use of Transfer Learning algorithms for enhancing the performance of machine learning algorithms has gained attention over the last decade. In this paper we introduce an extension and evaluation of our novel approach Similarity Based Instance Transfer Learning (SBIT). The extended version is denoted Class Balanced SBIT (or CB-SBIT for short) because it ensures the dataset resulting after instance transfer does not contain class imbalance. We compare the performance of CB-SBIT against the original SBIT algorithm. In addition, we compare its performance against that of the classical Synthetic Minority Over-sampling Technique (SMOTE) using network tra ffic data. We also compare the performance of CB-SBIT against the performance of the open source transfer learning algorithm TransferBoost using text data. Our results show that CB-SBIT outperforms the original SBIT and SMOTE using varying sizes of network tra ffic data but falls short when
compared to TransferBoost using text data
Impact of non-minimum-phase zeros on the weak-grid-tied VSC
Right-half-plain (RHP) zeros can significantly deteriorate a control system’s dynamic performances as it exhibits non-minimum-phase behaviors. In this paper, we investigate the occurrence mechanism of RHP zeros in weak-grid-tied VSCs as well as provide guidance for minimizing their effects. A reduced order multi-input multi-output (MIMO) transfer function of the weak-grid-tied VSC is firstly obtained. Then, the single-input single-output (SISO) transfer function to study the impact of the RHP zeros on the power response is further derived. The existence of RHP zeros is examined by applying the Routh criterion on the numerator of the SISO open-loop transfer function. We find that RHP zeros can exist either when the VSC works as an inverter or a rectifier. Furthermore, large grid impedance values as well as operation points with high active power values can result in a non-minimum-phase system. It is also shown that RHP zeros limit the minimum PLL bandwidth. Simulation results and RTDS experiments validate the correctness of the analysis and the conclusions obtained
Low-frequency converter-driven oscillations in weak grids: explanation and damping improvement
Low-frequency oscillations have been reported in several weak-grids-connected voltage-source-converter(VSC) systems. Although efforts have been devoted to understand the parametric and sensitivity impact of the VSC controller gains, a general formulation of the oscillation mechanism is still missing. Using transfer function dynamic modelling approach, we find that the outer loop active power control's bandwidth mainly determines the oscillation frequency. The PLL introduces a large phase lag around the frequency of the PLL bandwidth in weak grids conditions which decreases the oscillation damping. A simple but effective PI+Clegg integrator (CI) compensator is proposed to replace the standard outer loop active power controller compensating the PLL's phase delay and increase the oscillation damping. The results are verified in a real time digital simulator
Disassemble Byte Sequence Using Graph Attention Network
Disassembly is the basis of static analysis of binary code and is used in malicious code detection, vulnerability mining, software optimization, etc. Disassembly of arbitrary suspicious code blocks (e.g., for suspicious traffic packets intercepted by the network) is a difficult task. Traditional disassembly methods require manual specification of the starting address and cannot automate the disassembly of arbitrary code blocks. In this paper, we propose a disassembly method based on code extension selection network by combining traditional linear sweep and recursive traversal methods. First, each byte of a code block is used as the disassembly start address, and all disassembly results (control flow graphs) are combined into a single flow graph. Then a graph attention network is trained to pick the correct subgraph (control flow graph) as the final result. In the experiment, the compiler-generated executable file, as well as the executable file generated by hand-written assembly code, the data file and the byte sequence intercepted by the code segment were tested, and the disassembly accuracy was 93%, which can effectively distinguish the code from the data
- …