
Class Balanced Similarity-Based Instance
Transfer Learning for Botnet Family

Classification

Basil Alothman1, Helge Janicke2, and Suleiman Y. Yerima3

De Montfort University, Leicester LE1 9BH, UK.
1 P14029266@my365.dmu.ac.uk

2 heljanic@dmu.ac.uk
3 syerima@dmu.ac.uk

http://www.dmu.ac.uk/technology
Faculty of Technology, De Montfort University, Leicester, UK

Abstract. The use of Transfer Learning algorithms for enhancing the
performance of machine learning algorithms has gained attention over
the last decade. In this paper we introduce an extension and evaluation
of our novel approach Similarity Based Instance Transfer Learning
(SBIT). The extended version is denoted Class Balanced SBIT (or
CB-SBIT for short) because it ensures the dataset resulting after instance
transfer does not contain class imbalance. We compare the performance
of CB-SBIT against the original SBIT algorithm. In addition, we
compare its performance against that of the classical Synthetic Minority
Over-sampling Technique (SMOTE) using network traffic data. We also
compare the performance of CB-SBIT against the performance of the
open source transfer learning algorithm TransferBoost using text data.
Our results show that CB-SBIT outperforms the original SBIT and
SMOTE using varying sizes of network traffic data but falls short when
compared to TransferBoost using text data.

Keywords: Similarity-Based Transfer Learning · Botnet Detection ·
SMOTE · TransferBoost

1 Introduction

Transfer learning is an active research area in machine learning [14]. Common
machine learning algorithms deal with tasks individually [17], meaning several
tasks can only be learnt separately. Transfer learning attempts to learn from one
or more tasks (known as source tasks) and use the knowledge learnt to enhance
learning in another task (known as the target task). The target and source tasks
must be related in one way or another.

Transfer learning is typically employed when there is limited amount of
labelled data in one task (the target task), and sufficient data in another related
task (the source task). The idea here is that using only the target data can
lead to obtaining models with poor performance since there is insufficient data.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228198672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 B. Alothman, H. Janicke and S. Yerima

Whereas, by transferring knowledge from the source task(s), model quality can
be improved.

Transfer learning in network traffic classification was introduced in [19] where
feature transfer learning was used, as opposed to our method which is based on
instance transfer. The technique is based on projecting the source and target
data into a common latent shared feature space and then using this new feature
space for model building and making predictions. The technique attempts to
preserve the distribution of the data. Although the reported results seem to be
reasonably good, there is no freely available tool or code to use for comparison.
As this technique is iterative, it can be computationally heavy. The approach we
propose in this work is more efficient in terms of speed as it performs instance
transfer by performing only one pass over the target as well as source data.

A recent work that applies transfer learning for classification of network
traffic can be found in [16]. This work does not propose a new transfer learning
method, rather, it only evaluates the performance of an existing open source
transfer learning algorithm called TrAdaBoost [5]. Although the results show
performance improvement when compared against the base classifier without
transfer (referred to as NoTL in the publication), it is noteworthy to mention that
TrAdaBoost was extended and enhanced by the introduction of TransferBoost [7]
- which is the algorithm that we compare our results against as explained in more
detail in [2].

Instance transfer learning has been applied in multiple areas. For example,
the recent work in [13] reports an attempt that employs Multiple Instance
Learning (MIL) in text classification. This is a two stage method where, in the
first stage, the algorithm decides whether the source and target tasks are similar
enough to perform transfer which leads to the second stage where transfer is
performed.

In this paper, we extend our novel algorithm Similarity Based Instance
Transfer Learning (SBIT) and evaluate the performance of the extended
version. More detailed explanation of how SBIT works and an evaluation of
its performance can be found in our previous work in [2]. We will refer to the
extension presented in this work as Class Balanced SBIT (or CB-SBIT) because
it ensures that the dataset resulting after instance transfer is class balanced (see
Section 2 for more details).

The main contributions of this paper are as follows: 1) We introduce an
extension to our previous Similarity Based Instance Transfer approach [2] that
guarantess class balance in the resulting dataset (avoiding over-fitting) 2) We
compare the performance of the extended version of our algorithm against the
original version 3) We compare the performance of the extended version of our
algorithm against two classical and well known algorithms 4) We show where
our algorithm works well and where it does not.

The remainder of this paper is organised as follows: Section 2 introduces
the SBIT algorithm, highlights one of its current shortcomings, explains the
class imbalance problem and provides an overview of the new algorithm
CB-SBIT. Section 3 provides a detailed explanation of experimental setups and

Class Balanced Similarity-Based Instance Transfer Learning 3

results for comparing the performance of CB-SBIT against SBIT, SMOTE and
TransferBoost using two different types of data. The paper then ends with the
conclusions and future work in Section 4.

2 Similarity Based Instance Transfer

This section provides a short overview of the original SBIT algorithm [2], class
imbalance problem and then introduces the extended version of SBIT (i.e. the
CB-SBIT).

2.1 The SBIT Algorithm and its Class Imbalance Problem

The SBIT algorithm is an instance transfer algorithm that scans source datasets
one at a time and tries to find similar instances in these datasets to instances
in the target dataset. If any similar instance is found, it is transferred to the
target dataset which is used later to build a learning model. The pseudo-code
of SBIT is provided in Algorithm 1. It is important to bear in mind that SBIT
assumes the input target dataset is class balanced (i.e. it contains approximately
an equal percentage of classes).

Algorithm 1: The Proposed Transfer Learning Method Algorithm:
Similarity-Based Instance Transfer (SBIT)

Input : Source Datasets S1, S2, . . . Sn

Input : Target Dataset T
Input : Selected = []
Input : thr1, thr2, . . . thrk
Output: New Dataset that is the result of Concatenate(T, Selected)

1 for S ∈ [S1, S2 . . . Sn]: do
2 for Is ∈ S: do
3 for IT ∈ T : do
4 Sim1 = ComputeSimilarity1(Is, IT);
5 Sim2 = ComputeSimilarity2(Is, IT);
6 . . . ;
7 Simk = ComputeSimilarityk(Is, IT);
8 if Sim1 > thr1&Sim2 > thr2 . . .&Simk > thrk then
9 Add Is to Selected ;

10 TNEW = Concatenate(T, Selected);
11 Return TNEW ;

Careful inspection of Algorithm 1 reveals that SBIT copies an instance from
the source data to the target data as soon as it satisfies the similarity criteria
(lines 8 and 9). It performs this step without paying attention to the class of

4 B. Alothman, H. Janicke and S. Yerima

that instance. This means it is very possible for instances transferred by SBIT
to belong to one class only (or at least for the majority of them to belong to the
same class) which leads to creating a new target dataset that is class imbalanced.

2.2 The Class Imbalance Problem

One of the main reasons that cause overfitting is class imbalance [10]. Class
imbalance refers to the problem when a classification dataset contains more than
one class and number of instances in each class is not approximately the same.
For example, there might be a two-class classification dataset that contains 100
instances where the number of instances for one of the classes is 90 and for the
other is 10. This dataset is said to be imbalanced as the ratio of first class to
second class instances is 90:10 (or 9:1). One might train a model that yields 90%
accuracy but in reality it could be that the model is predicting the same class
for the vast majority of testing data. It is worth mentioning here that evaluation
methods such as f1-score, area under the curve, or precision/recall rates provide
provide better insight regarding classifier performance when using imbalanced
datasets. However, our work focuses on ensuring class balance so an easy to
interpret metric such as accuracy can be used.

There are several ways to combat class imbalance [3]. One of these methods
is to down sample the majority class (this is sometimes referred to as under
sampling). In other words, to randomly select a subset of the instances that
belong to the majority class so that the number of instances in each class in
the resulting dataset is approximately the same. Another method is to over
sample the minority class; which means to randomly duplicate instances from
the minority class so the dataset becomes class balanced.

One common technique that falls under this category is the SMOTE
algorithm (or the Synthetic Minority Over-sampling Technique [4]) which
generates synthetic instances that belong to the minority class rather than
generating duplicates.

2.3 The Class Balanced SBIT Algorithm (CB-SBIT)

To avoid class imbalance, the SBIT [2] algorithm discussed in Section 2.1 can be
modified to ensure the resulting dataset is class balanced.

Recall SBIT assumes that the target dataset is class balanced, the modified
version of SBIT makes sure that the new dataset (resulting after selecting
instances from source datasets) remains class balanced by using a strict criterion
as illustrated in Algorithm 2. This can be achieved in more than one way. For
example, it can be done on the fly by keeping track of the ratio of classes
of instances transferred from the source datasets and ensuring that whenever
an instance is added, the ratio remains almost the same. In other words, it
guarantees that approximately the same number of instances from different
classes is transferred to the target dataset. Another method is to perform a
post-processing step and sub-sample the instances selected for transfer in such a

Class Balanced Similarity-Based Instance Transfer Learning 5

way that the classes are balanced. In our implementation we have both methods
although we elected to include the latter in Algorithm 2 (lines 10 and 11).

Algorithm 2: Class Balanced Similarity-Based Instance Transfer
(CB-SBIT)

Input : Source Datasets S1, S2, . . . Sn

Input : Target Dataset T
Input : Selected = []
Input : thr1, thr2, . . . thrk
Output: New Dataset that is the result of Concatenate(T, Selected)

1 for S ∈ [S1, S2 . . . Sn]: do
2 for Is ∈ S: do
3 for IT ∈ T : do
4 Sim1 = ComputeSimilarity1(Is, IT);
5 Sim2 = ComputeSimilarity2(Is, IT);
6 . . . ;
7 Simk = ComputeSimilarityk(Is, IT);
8 if Sim1 > thr1&Sim2 > thr2 . . .&Simk > thrk then
9 Add Is to Selected ;

10 ClassBalancedSelected = SubSample(Selected);
11 TNEW = Concatenate(T,ClassBalancedSelected);
12 Return TNEW ;

The SubSample function in Algorithm 2 counts the number of instances in
each class in the input dataset and randomly removes instances from the majority
class(s) until the dataset is class balanced.

3 Experiments and Discussion

In this section we provide a detailed explanation of our experimental setups and
discuss the results. We are going to evaluate the performance of some commonly
used classifiers on Botnet network traffic data, compare CB-SBIT against the
original SBIT and then against two algorithms using data from two different
fields.

3.1 Evaluation of Classical Classifiers on Network Traffic Data

In this section we evaluate the performance of several classical classifiers on
botnet network traffic data (we use data for the following five botnets: RBot,
Smoke bot, Sogou, TBot and Zeus. In the plot in Figure 1 these are shown in the
x-axis as numbers from one to five. The y-axis in Figure 1 is the Accuracy. The
main purpose of these experiments is to select the best performing algorithm so
it can be used for comparison and as the base classifier for SBIT and CB-SBIT.

6 B. Alothman, H. Janicke and S. Yerima

Fig. 1. Performance of Classical Classifiers on Network Traffic Data

Figure 1 shows the average accuracy after running a ten-fold cross validation
using WEKA’s Decision Tree (J48), NaiveBayes, RanfomForest and SMO. It
can be noticed that RandomForest scored the highest accuracy in more datasets
than any other classifier. After performing the previous experiments, it becomes
clear that RandomForest should be selected as the base classifier for the transfer
learning algorithm developed as part of this work. This is because it performs
better than other classifiers on network traffic data.

3.2 CB-SBIT vs SBIT (using Network Traffic Data)

As explained in Section 2, SBIT and its extension CB-SBIT work by selecting
instances from source datasets and transferring those instances to the target
dataset. Currently the difference between the two algorithms is that CB-SBIT
makes sure the new target dataset contains equal percentage of classes. In order
to compare the two algorithms against each other, we have created varying
sizes of small network traffic datasets. The reason we selected to work on small
datasets is that transfer learning is normally applied when data is scarce. These
datasets are the same datasets used in [2] (i.e. network traffic data that belong
to the following five botnets: Zeus, TBot, Sogou, RBot and Smoke bot). As
explained in detail in [2], each of these botnets has a target dataset and a testing
dataset. Datasets that contain network traffic from Menti, Murlo and Neris
botnets were used as source datasets.

Class Balanced Similarity-Based Instance Transfer Learning 7

(a) Dataset 1 × 1 (b) Dataset 2 × 2

(c) Dataset 3 × 3 (d) Dataset 4 × 4

(e) Dataset 5 × 5

Fig. 2. Accuracy Values for CB-SBIT and SBIT

The contents of these datasets are derived from the freely available raw
Botnet network traffic data which can be found in [15]. As this dataset is in raw
format, we used FlowMeter [6] to generate several features that include statistical
values as well as information such as Source Port, Destination Port and Protocol.
Several steps were performed to transform this data into a suitable format for
machine learning. The data is in packet capture (PCAP) format and contains
traffic data for multiple Botnets as well as Normal traffic. we used FlowMeter

8 B. Alothman, H. Janicke and S. Yerima

to transform it into CSV format. We then followed guidelines provided by the
data publisher to assign labels to instances and replaced missing values in each
feature by the median of that feature. After this step we used one-hot encoding
to represent source port, destination port and protocol fields in binary format,
removed highly correlated features and detected and removed Outliers. After
the pre-processing steps were completed, we split the data into smaller datasets
according to label (each Botnet has a separate dataset) and used these datasets
in our experiments. All of these steps are explained in detail in [1].

To perform experiments, we varied the size of each target dataset in such
a way that each time the target dataset contains two, four, six, eight and ten
instances (we made sure each dataset contains the same number of botnet and
normal traffic to guarantee class balance). Then we ran SBIT and CB-SBIT
on each of these datasets and evaluated their performance by computing the
accuracy using the corresponding test dataset for each botnet. The accuracy
values are illustrated in Figure 2. A description of the target datasets is provided
in the first column in Table 1 in Section 3.3.

It is important to observe that although there are several metrics that can
be used to evaluate the performance of classifiers [11], we have only used the
accuracy (accuracy is the percentage of predictions that a model gets right).
The reason is that our test datasets are class balanced.

Figure 2 illustrates the results of comparing the performance of CB-SBIT
against that of SBIT using the experiment’s datasets. It shows that CB-SBIT
performs better than SBIT in general. Out of the 25 target datasets we used,
CB-SBIT outperforms SBIT in 16 of them. However, SBIT still outperformed
CB-SBIT in 6 datasets and they performed equally on three datasets.

3.3 CB-SBIT vs SMOTE (using Network Traffic Data)

The way SBIT and CB-SBIT work means new real data is being added to the
target dataset. By real data we mean the data is not synthetically generated but
rather it is collected from its original source. A common algorithm that is used
to generate synthetic data is the SMOTE algorithm (or the Synthetic Minority
Over-sampling Technique [4]) which generates synthetic instances for a particular
class in a dataset. This section compares and evaluates the performance of
CB-SBIT and SMOTE. The datasets in Section 3.2 were used in this evaluation
and their full description is provided in Table 1.

We varied the size of each target dataset so that each time the target
dataset contains two, four, six, eight and ten instances - we ensured that each
dataset contains the same number of botnet and normal traffic to guarantee
class balance. Then we ran CB-SBIT on each of these datasets and saved the
resulting target dataset - which now contains the original instances and instances
added from source datasets. Using the number of instances of each class in all
the resulting datasets, we ran SMOTE to generate new datasets of similar sizes
using the original target datasets as the base datasets.

Class Balanced Similarity-Based Instance Transfer Learning 9

Dataset Name (size) Size of Dataset
generated by
CB-SBIT

Size of Dataset
generated by
SMOTE

Zeus 1 (1 × 1) 32 × 32 -

Zeus 2 (2 × 2) 106 × 106 106 × 106

Zeus 3 (3 × 3) 108 × 108 108 × 108

Zeus 4 (4 × 4) 138 × 138 138 × 138

Zeus 5 (5 × 5) 156 × 156 156 × 156

TBot 1 (1 × 1) 42 × 42 -

TBot 2 (2 × 2) 161 × 161 161 × 161

TBot 3 (3 × 3) 211 × 211 211 × 211

TBot 4 (4 × 4) 274 × 274 274 × 274

TBot 5 (5 × 5) 360 × 360 360 × 360

Sogou 1 (1 × 1) 44 × 44 -

Sogou 2 (2 × 2) 67 × 67 67 × 67

Sogou 3 (3 × 3) 147 × 147 147 × 147

Sogou 4 (4 × 4) 170 × 170 170 × 170

Sogou 5 (5 × 5) 252 × 252 252 × 252

RBot 1 (1 × 1) 17 × 17 -

RBot 2 (2 × 2) 34 × 34 34 × 34

RBot 3 (3 × 3) 38 × 38 38 × 38

RBot 4 (4 × 4) 186 × 186 186 × 186

RBot 5 (5 × 5) 212 × 212 212 × 212

Smoke bot 1 (1 × 1) 1 × 1 -

Smoke bot 2 (2 × 2) 52 × 52 52 × 52

Smoke bot 3 (3 × 3) 58 × 58 58 × 58

Smoke bot 4 (4 × 4) 77 × 77 77 × 77

Smoke bot 5 (5 × 5) 96 × 96 96 × 96
Table 1. Datasets Resulting after CB-SBIT and SMOTE

The first column of Table 1 shows the botnet name and the size of the
baseline target dataset used (the 1 × 1 means this dataset contains only two
instances, one botnet and one normal, the same concept applies for other sizes).
The second column contains the size of the dataset after applying CB-SBIT
using each target dataset as explained above (number of botnet instances ×
number of normal instances). The third column contains the size of the
dataset after applying SMOTE using each target dataset. Observe that the cells
corresponding to target dataset of size 1× 1 is empty. This is because SMOTE
requires at least two instances of each class to work. Therefore, because SBIT
(and CB-SBIT) works normally even when the target dataset contains only one
instance of one or more classes, we believe it is fair to conclude that CB-SBIT
has a clear advantage over SMOTE when this is the case. In real life there may
be cases where only one instance is present for a botnet family - especially when
a botnet family is newly discovered.

10 B. Alothman, H. Janicke and S. Yerima

We have evaluated the performance of RandomForest using each one of
them. We have run RandomForest on each dataset and computed the accuracy
using the corresponding test dataset for each botnet. The accuracy values are
illustrated in Figure 3.

(a) Dataset 2 × 2 (b) Dataset 3 × 3

(c) Dataset 4 × 4 (d) Dataset 5 × 5

Fig. 3. Accuracy Values for CB-SBIT and SMOTE

Inspecting Figure 3 reveals interesting results. Because SMOTE does not
work when the number of instances for any of the classes in the data is less
than two, CB-SBIT has a clear advantage in this case. Figure 3a shows a similar
behaviour that CB-SBIT performs better when the dataset size is small but
greater than two. When the dataset size is increased gradually, the performance
of SMOTE improves and it can be said that it performs equally to CB-SBIT.
After using the 25 datasets described in Table 1, CB-SBIT performs better than
SMOTE in 17 cases, SMOTE performs better than CB-SBIT in 7 cases and
the two of them perform equally in one case. Recall that CB-SBIT (and SBIT)
are proposed specifically to address the problem of scarcity of instances in the
datasets. Clearly in this scenario CB-SBIT is a better choice than the classical
SMOTE.

Class Balanced Similarity-Based Instance Transfer Learning 11

3.4 CB-SBIT vs TransferBoost (using Text Data)

For this comparison the popular 20 news groups dataset [12] was used to compare
the performance of CB-SBIT against TransferBoost [7] and RandomForest. This
dataset consists of 20,000 messages from 20 different netnews newgroups where
1000 messages were collected from each newsgroup. According to the guidelines
provided in [12] the 20 groups can be generally categorised into the following
six high level categories: computer (contains five sub-categories), miscellaneous
(contains only one sub-category), recordings (contains four sub-categories),
science (contains four sub-categories), talk (contains three sub-categories) and
religion (contains three sub-categories). In order to perform our experiments we
have chosen the following six datasets (one from each category): misc.forsale,
comp.graphics, alt.atheism, sci.electronics, rec.autos and talk.politics.misc.

In order to obtain data suitable for machine learning, we used techniques
popular in text mining [8]. Text mining involves using several techniques to
process (usually unstructured) textual information and generate structured data
which can be used to create predictive models and/or to gain some insight into
the original textual information. The structured data is usually extracted by
analysing the words in the documents and deriving numerical summaries about
them.

To be able to use the text documents belonging to the six categories, we
created a dataset that has two columns: the first column is the text contained in
each document and the second column is the class of that document (which
is one of the six categories). After that, we applied the TextToWordVector
filter in WEKA [9] with Term Frequency and Inverse Document Frequency [18]
(TF-IDF). TF-IDF is a widely used transformation in text mining where terms
(or words) in a document are given importance scores based on the frequency of
their appearance across documents. A word is important and is assigned a high
score if it appears multiple times in a document. However, it is assigned a low
score (meaning it is less important) if it appears in several documents.

We used WEKA’s default parameters for this filter except for the number of
words to keep. This parameter is 1000 by default, and we changed it to 10000.
In addition to the TextToWordVector, we also used WEKA’s NGramTokenizer
(with NGramMinSize and NGramMaxSize set to two and three respectively).
Not only this, but we also removed Stop Words using a freely available set
of stop words. The resulting dataset contained as many as 10530 features and
several thousand instances (belonging to the six classes).

The next step was to make sure datasets contained positive and negative
examples. We have achieved this by choosing one of the six categories to be
our negative class (we randomly chose misc.forsale data). After this, we split
the large dataset into smaller datasets according to class and randomly selected
a subset of 194 instances from each dataset (except the misc.forsale dataset).
Then we randomly selected (without replacement) samples from the misc.forsale
dataset and appended them to the other datasets. This was done to ensure that
each dataset contains positive and negative instances. At the end of this step we
had five datasets as follows: comp.graphics, alt.atheism, sci.electronics, rec.autos

12 B. Alothman, H. Janicke and S. Yerima

and talk.politics.misc (to clarify, the comp.graphics dataset now contains 388
instances, 194 of which are of the comp.graphics class and the remaining 194 are
of the misc.forsale class, the same concept applies for the other four datasets).

Since transfer learning requires source and target datasets, we have
randomly selected two of the five datasets to be our source datasets (these
were the rec.autos and sci.electronics datasets). The remaining three datasets
(comp.graphics, alt.atheism and talk.politics.misc) were our target datasets. We
have randomly split each of these three datasets into smaller datasets (a target
and testing datasets). Each target dataset contained 10 instances (five positive
and five negative) and the remaining data was used as our testing datasets.
Observe that we made sure we randomly select non-overlapping subsets in all
previous steps. Details of these datasets are provided in Table 2.

Dataset Name No of Instances Dataset Usage

rec.autos 388 (194 × 194) Source dataset

sci.elecronics 388 (194 × 194) Source dataset

alt.atheism Target 10 (5 × 5) Target dataset

alt.atheism Test 378 (189 × 189) Test dataset

comp.graphics Target 10 (5 × 5) Target dataset

comp.graphics Test 378 (189 × 189) Test dataset

talk.politics.misc Target 10 (5 × 5) Target dataset

talk.politics.misc Test 378 (189 × 189) Test dataset
Table 2. Text Dataset Details

With this setup we have run experiments using RandomForest, TransferBoost
and CB-SBIT. When using RandomForest, we have trained it using only the
target datasets one at a time. This is because RandomForest only requires one
dataset as its input. TransferBoost and CB-SBIT require one Target dataset
and one or more Source Datasets, therefore we fixed the source datasets as
shown in Table 2 and changed the Target dataset using the Target datasets we
have selected. To evaluate, we computed the accuracy of each model using the
corresponding test dataset. Our results are illustrated in Table 3.

Dataset Name CB-SBIT TransferBoost RandomForest

alt.atheism 51.06% 89.68% 50.53%

comp.graphics 50.00% 78.84% 50.00%

talk.politics.misc 50.26% 87.56% 52.12%
Table 3. Results using Text Dataset

It is clear from Table 3 that when using textual data, TransferBoost
outperforms RandomForest and CB-SBIT. This could be attributed to the
nature of the data and how each algorithm works. It can be noticed that the

Class Balanced Similarity-Based Instance Transfer Learning 13

performance of CB-SBIT and RandomForest are almost identical. This is because
CB-SBIT uses RandomForest as its base learner and the fact that similarity
values between instances in source and target datasets were found to be too
small (when compared to the similarity values obtained when using network
traffic data).

Table 4 shows computed percentage of similarity values that are greater than
0.5 for two example text and network traffic datasets. The first column of the
table shows the two pairs used, while columns two to six show the percentage of
similarity results that are greater than 0.5 for the five different types of similarity
computation techniques we have used in our work: Tanimoto, Ellenberg, Gleason,
Ruzicka and BrayCurtis. Note that the total number of similarity values is the
product of the sizes of the pair of families/categories used. Further details on
the similarity computation techniques can be found in [2].

Similarity between Tanimoto Ellenberg Gleason Ruzicka BrayCurtis

Graphics - Autos 0.0093% 0.0093% 0.0193% 0.0093% 0.0193%

Politics - Electronics 0.0086% 0.0080% 0.0173% 0.0080% 0.0173%

Zeus - Sogou 12.6311% 91.2733% 97.3485% 7.9254% 14.1463%

TBot - Menti 2.9381% 85.6801% 99.8750% 2.0438% 3.0313%
Table 4. Percentage of Similairty Values that are > 0.5 using Text and Network Traffic
Data

It is evident that there is much higher similarity in network traffic data
than in text data. This means that CB-SBIT could hardly find any instances to
transfer from the source to any of the target datasets when using text data. This
is an interesting observation especially when it is compared to how CB-SBIT
was able to transfer several instances when used with the network traffic data.

4 Conclusions and Future Work

This paper has introduced an extension to a novel transfer learning algorithm
that is based on the similarity between instances from the target and source
datasets (the SBIT algorithm). The extended version of the algorithm is aware
of the percentage of classes in the resulting dataset (resulting after instance
transfer) in the sense that it makes sure the classes are balanced. This helps in
avoiding several problems such as overfitting and misinterpretation. The paper
also included experimental evaluation of the new algorithm (i.e. the CB-SBIT
algorithm) against the original SBIT algorithm as well as against two open source
commonly used algorithms; the SMOTE and TransferBoost algorithm.

Experimental results show that CB-SBIT outperforms SBIT in majority of
the tests; which means CB-SBIT is an improvement over SBIT. When comparing
CB-SBIT against SMOTE, several network traffic datasets of various sizes
were used and it was evident that CB-SBIT outperforms SMOTE in small

14 B. Alothman, H. Janicke and S. Yerima

datasets (CB-SBIT seems to perform better than SMOTE as the dataset gets
smaller). An interesting case was when the dataset contains only one instance
of one or more classes. SMOTE does not work in this case whereas CB-SBIT
functions normally. On the other hand, text data from the publicly available
20 news groups dataset was used to compare the performance of CB-SBIT
against TransferBoost. It was interesting to discover that, despite the fact that
SBIT outperforms TransferBoost when using network traffic data as it was
shown in the original SBIT paper, TransferBoost performs much better than
CB-SBIT on text data. This could be due to the nature of the data and the
transformations performed in pre-processing it. One interesting observation was
made by CB-SBIT is that the similarity values between instances from different
topics was very small. This accounts for the poorer perfornace of CB-SBIT on
the text data. Similarity values were observed to be much higher in the network
data where CB-SBIT performed very well.

References

1. Alothman, B.: Raw network traffic data preprocessing and preparation for
automatic analysis. International Conference On Cyber Incident Response,
Coordination, Containment & Control (Cyber Incident) - 2018 (Jun 2018)

2. Alothman, B.: Similarity based instance transfer learning for botnet detection.
International Journal of Intelligent Computing Research (IJICR) 9, 880–889 (Mar
2018)

3. Chawla, N.V.: Data Mining for Imbalanced Datasets: An Overview, pp. 875–886.
Springer US, Boston, MA (2010). https://doi.org/10.1007/978-0-387-09823-4 45,
https://doi.org/10.1007/978-0-387-09823-4 45

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (Jun 2002),
http://dl.acm.org/citation.cfm?id=1622407.1622416

5. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer
learning. In: Proceedings of the 24th International Conference
on Machine Learning. pp. 193–200. ICML ’07, ACM, New
York, NY, USA (2007). https://doi.org/10.1145/1273496.1273521,
http://doi.acm.org/10.1145/1273496.1273521

6. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., A., A.: Characterization of
encrypted and vpn traffic using time-related features. In: ICISSP (2016)

7. Eaton, E., desJardins, M.: Selective transfer between learning tasks using
task-based boosting. In: Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI-11). pp. 337–342. AAAI Press (August 7–11 2011)

8. Feldman, R., Sanger, J.: Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press, New York, NY, USA
(2006)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.H.: The weka data mining software: An update. SIGKDD Explor.
Newsl. 11(1), 10–18 (Nov 2009). https://doi.org/10.1145/1656274.1656278,
http://doi.acm.org/10.1145/1656274.1656278

10. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications.
Wiley-IEEE Press, 1st edn. (2013)

Class Balanced Similarity-Based Instance Transfer Learning 15

11. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification
Perspective. Cambridge University Press, New York, NY, USA (2011)

12. Lang, K.: 20 newsgroups data set, http://www.ai.mit.edu/people/jrennie
/20Newsgroups/

13. Liu, B., Xiao, Y., Hao, Z.: A selective multiple instance transfer learning
method for text categorization problems. Knowledge-Based Systems 141,
178 – 187 (2018). https://doi.org/https://doi.org/10.1016/j.knosys.2017.11.019,
http://www.sciencedirect.com/science/article/pii/S0950705117305415

14. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. on Knowl. and Data
Eng. 22(10), 1345–1359 (Oct 2010). https://doi.org/10.1109/TKDE.2009.191,
http://dx.doi.org/10.1109/TKDE.2009.191

15. Samani, E.B.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards effective
feature selection in machine learning-based botnet detection approaches. 2014
IEEE Conference on Communications and Network Security pp. 247–255 (2014)

16. Sun, G., Liang, L., Chen, T., Xiao, F., Lang, F.: Network traffic
classification based on transfer learning. Computers & Electrical Engineering
(2018). https://doi.org/https://doi.org/10.1016/j.compeleceng.2018.03.005,
http://www.sciencedirect.com/science/article/pii/S004579061732829X

17. Torrey, L., Shavlik, J.: Transfer learning. Handbook of Research on Machine
Learning Applications. IGI Global 3, 17–35 (2009)

18. Weiss, S., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods
for Analyzing Unstructured Information. SpringerVerlag (2004)

19. Zhao, J., Shetty, S., Pan, J.W.: Feature-based transfer learning for network security.
In: MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)
(Oct 2017)

