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Abstract—This paper studies the dynamic behaviors of weak-
grid-tied VSCs with simplified transfer functions, which provides
an accurate stability analysis and useful indications for tuning
system parameters. A reduced-order multi-input multi-output
(MIMO) transfer function that contains four single-input single-
output (SISO) transfer functions for the weak-grid-tied VSC is
first presented. It is found that the four SISO transfer functions
share the same equivalent open-loop transfer function, i.e., the
same stability conclusion. The Bode plots of the equivalent open-
loop transfer function show that the inner current loop behaves
as a band-pass filter whose maximum gain is approximately at
the frequency of the PLL’s bandwidth. By stability criterion, the
harmonic amplification and instability occur when its maximum
gain exceeds 0dB caused by high PLL’s bandwidth, large grid
impedance or high active power. It is also found that the target
system is less stable when it works as an inverter than as a
rectifier, due to the risk of the local positive feedback in the
inverter mode. An effective criterion is further proposed to guide
the selection of a proper PLL’s bandwidth to ensure the stability
of the VSC system. Simulation results validate the correctness of
the analysis and the efficacy of the criterion.

Index Terms—Weak-grid-tied VSCs, MIMO transfer function,
system parameter tuning, PLL’s bandwidth, current control
stability.

I. Introduction

THE increasing penetration of renewable energies and high
voltage direct current transmission (HVDC) promotes the

wide application of power electronics devices in the power
system [1], [2]. Among various kinds of power electronic-
s devices, the voltage-source converter (VSC) is the most
commonly used. For example, almost all Photovoltaics (PVs)
and direct-drive permanent magnet synchronous generators
(PMSGs) for wind turbine applications are connected to the
grid through VSCs [2].

Especially in China, the VSC-HVDC, whose two terminals
are VSCs, has been widely used to interconnect AC grids and
integrate large-scale renewable energy. That power electronics
converters replacing traditional synchronous generators can
decrease the strength of the grid, even resulting in weak
grids [3], [4]. For instance, after the back-to-back VSC-HVDC
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project (±420kV/1250MW) between Chongqing and Hubei
province in China is put into operation, the minimum short
circuit ratio (SCR) in Chongqing side can be decreased to 1.9
[5]. Weak grids can severely worsen the stability of the VSC
system as well as bring great challenges to the control of the
VSC [6]. The most commonly installed VSC converter is the
two- and three-level used in wind and PV applications [7], [8],
while the MMC-HVDC (modular multilevel converter based
HVDC) converter is widely used in high voltage direct current
transmission applications.

The stability analysis of weak-grid-tied VSCs has drawn
much attention from both academic researchers and industrial
engineers. Several models have been proposed for analyz-
ing the small-signal stability of this system, including the
impedance-based methods [9]–[14], the complex-torque-based
method [15]–[17] and the eigenvalue analysis [3], [4], [18],
[19]. It is reported that the impacts of the inner current loop
and the outer loop on the small-signal stability of the VSC
can be investigated separately, due to different time scales [17].
The outer loop of the VSC provides d and q current references
for the inner loop, where one component is related to the AC
active power control or DC voltage control and the other is
related to the AC voltage or reactive power control [3], [4].
Following standard cascaded control tuning methodologies, the
outer loops are designed much slower than the inner loop
[20]. Thus, the current control stability is a precondition of
the system stability for the design of the outer loops. In
other words, the inner current loop’s small-signal stability is a
necessary condition for the small-signal stability of the overall
system.

The phase-locked loop (PLL) plays an important role in
determining the inner current loop’s stability of the weak-grid-
tied VSC according to [13], [15], [16]. From the viewpoint of
impedance characteristics, the grid-tied inverter’s impedance
with the current control and the PLL was investigated in [13].
And it shows that a higher PLL bandwidth yields a wider
frequency range of negative resistance behavior, which will
deteriorate the small-signal stability. From the viewpoint of
damping, eigenvalue analysis and complex torque analysis
of the weak-grid-tied inverter with the current control and
the PLL were carried out during deep voltage sag in [15],
[16]. And it shows that the increase of PLL’s bandwidth can
decrease the total damping and deteriorate the small-signal
stability. These methods are well applied for analyzing the
stability considering the PLL and the current control, but are
limited for providing more insights into the PLL’s impacts on
the stability from the viewpoint of classical control theory.

The transfer function is one classical method to investigate
the stability of the weak-grid-tied voltage source converter
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Fig. 1. The schematic of the weak-grid-tied two-level converter system.
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(VSC). However, its application is limited by the high di-
mension and complexity of the real system [6], [21], [22].
To overcome these limitations, the transfer function should
be carefully simplified with appropriate dimension reduction
methods. Then, the classical transfer function’s advantages of
explicitly displaying the influences of each part of the system
on its stability and straightly guiding the parameter design and
improvements can be well taken.

The rest of the paper is organized as follows. In Section
II, a simplified MIMO transfer function of the VSC system
is obtained by neglecting the high-frequency components like
time delays and the voltage filters. A same equivalent open-
loop transfer function for each input-output pair is obtained
and used to indicate the stability. In Section III, the PLL’s
effect as a high-pass filter is revealed on the Bode plots of
the open-loop transfer function. Its impacts on the stability
of the inner current loop and the physical understandings
are discussed. In Section IV, simulation results are presented
to validate the proposed method. A criterion that guides the
selection of the proper bandwidth for the PLL is provided to
ensure the small-signal stability of the inner current loop of
the target system in Section V.

II. Reduced-orderMIMO Transfer Function

In this section, the transfer function of the target system is
derived and properly simplified with reasonable assumptions.
Fig. 1 shows the schematic of the typical scenario, where a
VSC is connected to a weak power grid. The plant in Fig.
1 refers to the main circuit that is composed by the weak

grid and the electrical components of the VSC. The converter
controller is composed by a current control and a PLL. The
PLL provides the synchronization with the grid, the inner loop
controls the active and reactive current through the converter
line reactor. And ug, us, uc are the voltage phasers of the grid,
the PCC (point of common coupling) and the VSC, ic is the
phaser of the current injecting to the grid. One can refer to the
Appendix for the mathematical descriptions for the physical
part and control part of the target system.

A. Model Linearization

The mapping relations of one small perturbation in the two
different frames shown in Fig. 2 can be described by[
∆ fd
∆ fq

]
=Tdqcf2dq0

 ∆ f cf
d

∆ f cf
q

∆θpll

 ,
[
∆ f cf

d
∆ f cf

q

]
=Tdq2dqcf0

 ∆ fd
∆ fq
∆θpll

 ,
(1)

where f denotes us, uc, ug or ic, the superscript ”cf” denotes
that the variable is in the the control system’s dq frame, θpll is
the initial phase of the PCC voltage observed by PLL, the ω1
in Fig. 2 is 2π50rad/s, and the matrix of Tdqcf2dq0 and Tdq2dqcf0
are as follows,

Tdqcf2dq0 =

[
1 0 − f cf

q0
0 1 f cf

d0

]
,Tdq2dqcf0 =

[
1 0 fq0
0 1 − fd0

]
.

(2)
Fig. 3(a) shows the linearized model of each component of

the inner current loop of the target system. Specifically, the
linearized representation of the plant can be written as{

sLg∆icd= − Rg∆icd+ω1Lg∆icq+∆usd − ∆ugd
sLg∆icq= − ω1Lg∆icd − Rg∆icq+∆usq − ∆ugq

, (3){
sLeq∆icd= − Req∆icd+ω1Leq∆icq+∆ucd − ∆usd
sLeq∆icq= − ω1Leq∆icd − Req∆icq+∆ucq − ∆usq

, (4)

where s is the Laplace variable, and the subscripts d and q
indicate d- and q-axis components of a variable in the grid’s dq
frame; ic is the current across the PCC; us is the PCC voltage;
ug is the voltage of the equivalent grid voltage source; uc is
the output voltage of the VSC; Rg and Lg are the equivalent
resistance and inductance of the AC grid, respectively; Req and
Leq are the equivalent resistance and inductance between the
VSC and the PCC, respectively.

The linearized representation of the PLL can be written as
∆θpll=Gpll∆usq, where Gpll is the transfer function of the PLL
and can be represented as

Gpll =

(
2ξωplls + ω2

pll

)
/usd0

s2 + 2ξωplls + ω2
pll

, (5)

where ξ is the damping ratio, ωpll is the bandwidth of the
PLL, and the subscript 0 denotes steady-state values. Combing
∆ugd = 0, ∆ugq = 0 and (3), the final linear representation of
the PLL can be described as

∆θpll=Gpll

[
ω1Lg∆icd+ (sLg + Rg)∆icq

]
. (6)

By substituting the linear representations of the current
control and the PLL into that of the plant in (4), the small-
signal current outputs of ∆icd, ∆icq can be presented as the
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Fig. 3. (a): The linearized representation of the inner current loop. (b): The simple small-signal block diagram of the inner current loop.
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Fig. 4. Magnitude response of the system with different time delays and
measurement filters.

functions of other small-signals including ∆usd, ∆usq, ∆icd,
∆icq, ∆icf∗

cd , ∆icf∗
cq , ∆θpll and ∆vdc, which is explicitly shown

in (7). Equation (7) is too complicated and further proper
simplifications should be carried out for effective analysis.

B. Impact of the Time Delays and Measurement Filters
To study the impact of the time delays and the measurement

filters, the magnitude responses with different time delays and
measurement filters are compared, as shown in Fig. 4. The
other parameters are presented in Table I. It can be seen that
the time delays and the measurement filters mainly play a role
in the high-frequency range ω>1500rad/s (200Hz), which is
much higher than the cut-off frequency of the inner current
loop (about 300rad/s) and the bandwidth of the PLL (around
10Hz). The high frequency stability issues also exist in the
weak-grid-tied VSC, however it is out of the scope of this
paper which focuses on the medium-frequency stability.

C. Impact of the Outer Loop
Fig. 5 shows the magnitude response of the outer loop of the

active power control, where the cut-off frequency of outer loop
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Fig. 5. Magnitude-frequency responses of the outer active power loop.

is around 60rad/s. Fig. 4 shows that the cut-off frequency of the
inner loop is around 300rad/s. It can be seen that the outer loop
is much slower than the current loop. Thus, it is reasonable
to simply the outer loop when analyzing the stability for the
medium frequency ranges.

D. Reduced-order MIMO Transfer Function

To obtain the reduced-order as well as valid MIMO transfer
function of the inner loop, the following reasonable assump-
tions are adopted.

1) The time delay usually plays a role in high frequency
stability issues [23], but this paper focuses on the medium
frequency stability. For the sake of simplifying, the delays
of the control system, voltage modulation and the voltage
measurement filter are neglected, thus Gd=1, Gf=1.

2) The perturbation of the voltage on the DC side is small
enough to be neglected, i.e., ∆vdc=0.

TABLE I
Parameters of the Test Case inModel Validation

Parameters Unit Value
Rated/Base power MW 1500
Rated/Base voltage kV 525
Rated frequency Hz 50
SCR 1 1.1
Rg, Lg Ω, mH 1.67, 531.7
Req, Leq Ω, mH 0.58, 184.8
ξ 1 0.707
ωpll, kp pll, Ti pll Hz, rad/(V · s), s 16, 3.32 × 10−4, 0.0141
ωCL, kp cl, Ti cl Hz, V/A, s 125, 145.16, 0.3183
ωOL PC,kp PC,ki PC Hz, A/W, A/(Ws) 6, 3.56×10−7, 2.80×10−4

ωOL QC,kp QC,ki QC Hz, A/W, A/(Ws) 6, 3.56×10−7, 2.80×10−4

Ps,Qs p.u. 1, 0.8
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]T  GdGCL
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0

0 GdGCL
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+


∆usd
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∆icd
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T



(GdGf−1)
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0
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(sLeq+Req+GdGCL)vdc0


(7)

[
∆icd
∆icq

]
=

 GCL
Zic

0
0 GCL

Zic

 [ ∆icf∗
cd
∆icf∗

cq

]
+

 − [GCL+Req]icq0

Zic
Gpllω1Lg − [GCL+Req]icq0

Zic
Gpll (sLg + Rg)

[GCL+Req]icd0

Zic
Gpllω1Lg

[GCL+Req]icd0

Zic
Gpll (sLg + Rg)

 [ ∆icd
∆icq

]
(8)

By substituting Gd=1, Gf=1, ∆vdc=0 and (6) into (7), we get
a simplified MIMO linearized mathematical representation of
(7) as shown in (8), where Zic=sLeq+Req+GCL, and GCL is the
PI controller in the current control. Based on (8), the reduced-
order MIMO transfer function with ∆icf∗

cd , ∆icf∗
cq as inputs and

∆icd, ∆icq as outputs, can be obtained as[
∆icd
∆icq

]
=

[
A B
C D

] [
∆icf∗

cd
∆icf∗

cq

]
. (9)

Fig. 3(b) shows a simplified block diagram of the inner current
loop according to (9). And the A, B, C and D in (9) can be
represented as

A =
GCL

Zic

1 −Gqq

1 +Gdd −Gqq
, B =

GCL

Zic

−Gdq

1 +Gdd −Gqq

C =
GCL

Zic

Gqd

1 +Gdd −Gqq
,D =

GCL

Zic

1 +Gdd

1 +Gdd −Gqq

, (10)

where Gdd, Gdq, Gqd and Gqq can be written as
Gdd =

GCL

Zic
Gpllω1Lgicq0,Gdq =

GCL

Zic
Gpll

(
sLg + Rg

)
icq0

Gqd =
GCL

Zic
Gpllω1Lgicd0,Gqq =

GCL

Zic
Gpll

(
sLg + Rg

)
icd0

.

(11)
And according to (26), GCL/Zic in (10) and (11) is written as

GCL

Zic
=

ωCL

(
Leq +

Req

s

)
sLeq + Req + ωCL

(
Leq +

Req

s

) = 1
(s/ωCL + 1)

, (12)

which is a first-order lag with a time constant of 1/ωCL, and
ωCL is the bandwidth of the inner loop.

E. Equivalent Open Loop Transfer Function

The MIMO transfer function (9) is stable if and only if all
elements in the transfer function matrix are stable. As shown
in (10), each A, B, C and D has two multiplying terms: the
first term on the right hand side of each equation of (10) is
GCL/Zic, which is a common term; the second term on the right
hand side of each equation of (10) has the same denominator
(1+Gdd−Gqq). From (12), GCL/Zic is table as it has a negative
root -ωCL. Thus, the stability of the current loop depends on
the second terms of A, B, C and D.

By linear control theory, the second terms of A, B, C, and
D are stable if and only if all the poles of each second term
are on the left half plane (LHP). Also, as the denominators
of Gdd, Gqq, Gdq and Gqd are the same according to (11), the
second terms of A, B, C, and D have the same characteristic
equation 1+Gdd−Gqq = 0. In other words, they have the same
poles.

From the above analysis, we draw the conclusion that
the small-signal stability of the inner loop of the VSC can
be transformed to computing the roots of the characteristic
equation 1 + Gdd − Gqq = 0. Furthermore, the complex root
computation can be replaced by the analysis on the Bode plots
of Gdd−Gqq, which is quite mature in classical control theory.
Therefore, we define G0 = Gdd −Gqq as the equivalent open-
loop transfer function that can be expressed as

G0 =
GCL

Zic
Gpll

[
ω1Lgicq0 − (sLg + Rg) icd0

]
. (13)

When icd0 , 0 and Rg = 0, (13) can be rewritten as

G0=
GCL

Zic
Gpll

[
−Lgicd0

(
s +
−ω1icq0

icd0

)]
(icd0 , 0) . (14)

Then, in the condition that icq0=0 (unit power factor), by
substituting (5) and (12) into (14), the equivalent open loop
transfer function G0 in the form of the multiplication of factors
can be obtained as

G0 =
−Lgicd0s

[
1 + s

(
2ξ

/
ωpll

)]
usd0 (1 + s/ωCL)

[
1 + s

(
2ξ

/
ωpll

)
+ s2

/
ω2

pll

] . (15)

Equation (15) has five factors including one proportional
factor, one differential factor, one first-order lead factor, one
first-order lag factor and one second-order lag factor.

III. PLL’s High-pass Filter Effect inWeak-grid-tied VSCs
and Stability Analysis

In this section, the PLL’s effect as a high-pass filter in
the weak-grid-tied VSC is revealed and the current control
stability of the weak-grid-tied VSC is investigated based on
the equivalent open-loop transfer function obtained.
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TABLE II
The Characteristics of Each Factor in G0 (icq0=0, icd0 > 0)

Corner Gain Phase Cumulative Cumulative
No. Factor frequency slope (deg) slope phase

(rad/s) (dB/dec) (dB/dec) (deg)
1 −Lgicd0/usd0 —- 0 -180 0 -180
2 s —- +20 90 +20 -90
3 1 + 2sξ/ωpll ωpll/(2ξ) +20 90 +40 0
4 (1+ 2sξ/ωpll + s2/ω2

pll)
−1 ωpll -40 -180 0 -180

5 (1 + s/ωCL)−1 ωCL -20 -90 -20 -270
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Fig. 6. (a): The PLL’s high-pass filter effect in weak-grid condition.(b): The
current control’s low-pass filter effect.

A. PLL’s High-pass Filter Effect in Weak-grid-tied VSCs

The corner frequency, the gain slope and the phase of each
factor at its corner frequency in (15) are listed in Table II
and sorted by their corner frequency when the VSC works
as an inverter that injects active power to the AC power grid
with icd0 > 0. And the cumulative gain slope and phase at
each corner frequency are also obtained. Based on Table II,
the Bode plots of the equivalent open loop transfer function
can be drawn by hand. According to (15) and Table II, four
factors’ corner frequencies are below the frequency of the
PLL’s bandwidth and they are listed as follows.

1) -Lgicd0/usd0 is the proportional factor, in which the e-
quivalent grid inductance Lg indicates the AC system strength,
and the active power current icd0 represents the active power
injected to the grid. This proportional factor contributes a value
added to the amplitude-frequency curve of G0 for the entire
frequency range (0,∞).

2) The differential factor s contributes a 20dB/dec gain slope
for the entire frequency range (0, ∞).

3) The first-order lead factor (1+ 2sξ/ωpll) comes from the
numerator of Gpll and contributes a 20dB/dec gain slope in
the frequency range (ωpll/(2ξ), ∞). Thus, the cumulative gain
slope becomes 40dB/dec at ω = ωpll/(2ξ).

4) The second-order lag factor (1 + 2sξ/ωpll + s2/ω2
pll)
−1

comes from the denominator of Gpll and contributes a -
40dB/dec gain slope in the frequency range (ωpll,∞). Thus,
the cumulative gain slope becomes 0dB/dec at ω = ωpll, which
means that the largest value of G0’s gain appears at ω = ωpll
and a larger ωpll results in a larger gain at ω=ωpll. Obviously,
a larger Lg or icd0 also means a larger gain at the frequency
ω=ωpll.

Fig. 6(a) shows the Bode plots of G0 considering the PLL,
the grid impedance, and the active power. It shows that the
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PLL can behave as a high-pass filter in the weak-grid-tied
VSC when −Lm

∣∣∣∣G0

(
jωpll

)∣∣∣∣ > −3dB, which will let the high
frequency harmonics pass.

B. Total Band-pass Filter Effect and Stability Analysis

The first-order lag factor (1 + s/ωCL)−1 stems from the
current control and contributes a -20dB/dec gain slope in the
frequency range (ωCL, ∞). Thus, the current control behaves
as a low-pass filter as shown in Fig. 6(b). And the cumulative
gain slope becomes -20dB/dec in the frequency range (ωCL,∞)
due to the current control. Therefore, the equivalent open-loop
transfer function of the weak-grid-tied VSC can behave as a
band-pass filter as shown in Fig. 7. From the Bode plots in
Fig. 7, we can see that the amplitude-frequency curve begins
to decline after the frequency reaches the current control’s
bandwidth.

The stability criterion based on the Bode plots is

kg = −Lm
∣∣∣∣G0

(
jωg

)∣∣∣∣ > 0, (16)

where ωg is the phase-crossover frequency, and kg is the gain
margin at ωg. By the stability criterion (16), the inner current
loop is stable if and only if G0’s gain at the phase-crossover
frequency is smaller than 0dB. According to Table II, G0’s
phase-crossover frequency approximately equals to the PLL’s
bandwidth ωpll, as the cumulative phase equals to 180◦ at ωpll.
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Thus, the impact of each factor on the current control
stability can be transformed to investigating how each factor in
G0 impacts the gain at the phase-crossover frequency ω = ωpll.
The detailed analysis on the impacts of each factor as well
as their corresponding physical meanings on the small-signal
stability of the current control are listed as follows.

1) Fig. 8(a)-Fig. 8(c) show that, a larger Lg, icd0(icd0 > 0),
or PLL’s bandwidth ωpll can all result in a larger value of G0’s
gain at the phase-crossover frequency ωpll, thus decreasing the
gain margin. Because the largest value of G0’s gain appears
at the phase-crossover frequency ω = ωpll as shown in Fig.
7. And the gain margin is defined as the amplitude difference
between the 0dB line and the amplitude-frequency line of G0
at ωpll, i.e., 0dB − 20 log |G0(ω = ωpll)|dB.

2) Fig. 8(d) presents that the current control doesn’t have
impact on the maximum value of the magnitude response,
i.e., the current control stability of the VSC system. One
important function of the current control is to suppress the
high-frequency harmonics. As a general rule-of-thumb, its
bandwidth is chosen to be 0.1 to 0.2 times of the power
converter switching frequency [4]. As the PLL is usually
designed to be much slower than the current control to
avoid control resonance and provide enough time for current
damping in engineering practice. Thus, ωpll < ωCL is satisfied,
Therefore, the inner loop current control’s bandwidth doesn’t
change 20 log |G0(ω = ωpll)|dB, and doesn’t impact the current
control stability.

3) The current control always has a positive stability margin
when the VSC works as a rectifier (icd0 < 0). Because the
phase of the proportional factor is 0◦ and the Bode phase-
frequency curve of G0 doesn’t have any intersection points
with the line of −180◦ when icd0 < 0. Thus,the phase of
G0 is always in the range of (−90◦, 90◦) and there is no
phase-crossover frequency on G0’s Bode plots when icd0 < 0.
However, the phase of the proportional factor is −180◦ when
icd0 > 0 and there is a phase-crossover frequency on G0’s Bode
plots. Once the gain margin is negative, there is a risk of the
local positive feedback in the inverter mode.

C. Physical Understandings of the PLL’s High-pass Filter
Effect

Fig. 9 presents the small-signal block diagram of the current
control of the weak-grid-tied VSC according to equation (8). It
shows that there are four feedback loops in the weak-grid-tied
VSC, where feedback loops 1 and 2 are the d and q current
feedback control, feedback loops 3 and 4 are introduced by
the voltage drop on the grid impedance through the PLL. In
strong-grid conditions, Lg ≈ 0, Rg ≈ 0, feedback loop 3 and
4 disappear. However, in weak-grid condition, Lg ≈ 0 doesn’t
satisfy, and feedback loop 3 and 4 exist.

In weak-grid condition, the d-axis and q-axis current con-
trols are tightly coupled because of the large grid impedance,
see loop 3 and 4. In loop 4, the grid inductance can amplify the
disturbance, the current control suppresses the disturbance, the
PLL’s denominator suppresses and PLL’s numerator amplifies
the disturbance. If the disturbance suppression effect is smaller
than the disturbance amplification effect, the harmonics in the
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+
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Fig. 9. Four feedback loops in the weak-grid-tied VSC.

q-axis current disturbance can be amplified by the feedback
loop 4. And the PLL’s high-pass dynamics emerges. The large
grid inductance is the main factor that can lead to the PLL’s
high-pass dynamics. Theoretically, a larger grid inductance
(Lg) in feedback loop 4 can move the gain-frequency curve
in Fig. 8(c) upward till above 0dB, which results in the high-
pass filter effect of the PLL.

D. Impact of the Reactive Current

In Section III-B, it is assumed that icq0=0 (unit power
factor). When icq0 , 0, by substituting (5) and (12) into (14),
the equivalent open loop transfer function G0 in the form of
the multiplication of factors can be obtained as

G0 =
ω1Lgicq0

[
1 + s

(
icd0

/
(−ω1icq0)

)] [
1 + s

(
2ξ

/
ωpll

)]
usd0 (1 + s/ωCL)

[
1 + s

(
2ξ

/
ωpll

)
+ s2

/
ω2

pll

] . (17)

Equation (17) also has five factors including one proportion-
al factor, two first-order lead factor, one first-order lag factor
and one second-order lag factor.

The Bode plots of G0 when (icq0 , 0) can also be drawn
according to (17). Differing from (15), the proportional factor
in (15) is replaced by a first-order lead factor in (17) with a
corner frequency of (−ω1icq0/icd0). The value of (−ω1icq0/icd0)
depends on icd0 and icq0, and has three cases of below ωpll/(2ξ),
above ωpll, or in the interval of [ωpll/(2ξ), ωpll]. For the
three cases, Table III, Table IV and Table V present the
corner frequency, the gain slope and the phase of the factors
in G0 at its corner frequency, and is sorted by their corner
frequency. And the cumulative gain slope and phase at each
corner frequency are also presented. The Bode plots of G0 is
presented in Fig. 10 when (−ω1icq0/icd0) is below ωpll/(2ξ),
above ωpll.

When [(−ω1icq0/icd0)< ωpll/(2ξ)] and [ωpll/(2ξ)<
(−ω1icq0/icd0)< ωpll], Table III and Table IV show that the
maximum gain of G0 is also approximately at the frequency
of the PLL’s bandwidth . When [(−ω1icq0/icd0) >ωpll], Table
V shows that the maximum gain of G0 is in the interval of
[ωpll/(2ξ), ωpll], which is near PLL’s bandwidth. Thus, the
Bode plots of G0 presented in Fig. 10 when (icq0 , 0) have
a similar form as Fig. 7. Impacts of different factors on the
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TABLE III
The Factors in G0 when [(−ω1icq0/icd0)<ωpll/(2ξ)], (icq0 < 0, icd0 > 0)

Corner Gain Phase Cumulative Cumulative
No. Factor frequency slope (deg) slope phase

(rad/s) (dB/dec) (dB/dec) (deg)
1 ω1Lgicq0/usd0 —- 0 -180 0 -180
2 1 + sicd0/(-ω1icq0) −ω1icq0/icd0 +20 90 +20 -90
3 1 + 2sξ/ωpll ωpll/(2ξ) +20 90 +40 0
4 (1+2sξ/ωpll+s2/ω2

pll)
−1 ωpll -40 -180 0 -180

5 (1 + s/ωCL)−1 ωCL -20 -90 -20 -270

band-pass filter effect of G0 can also be analyzed in a similar
way shown in Fig. 8 when (icq0 , 0) and similar conclusions
can be drawn.

IV. Simulation Results

To validate the proposed method and the impacts of different
impacting factors on the stability, three cases with the varying
PLL bandwidth, current control bandwidth and the active
power and are studied. The d-axis and q-axis current step from
the initial value to a higher value at t=0.8s. The weak system
defined in the paper is a weak grid with SCR=1.1. The SCR
is defined as the ratio of the short circuit capacity over the
rated power.

A. Impact of the Bandwidth of the PLL

From the analysis in Section III-B, we can see that the
increase of the bandwidth of the PLL enlarges the value of
G0’s gain at the phase-crossover frequency ω=ωpll, which
results in G0’s effect as a band-pass filter and deteriorates the
the current control stability.

In this section, four cases with the PLL’s bandwidth being
6Hz, 16Hz, 50Hz and 80Hz are chosen for the simulation
to verify the above conclusion. The other parameters are the
same with those in Table I. The Bode plots of the four cases
are presented in Fig. 11(a). It can be seen that the gain at
the phase-crossover frequency increases when the PLL has a
larger bandwidth. The value of the gain is larger than 0dB
at its phase-crossover frequency of 600rad/s(95.5Hz) when
ωpll=80Hz, which means that the current control is unstable.

The time domain simulation results of the cases with
ωpll=50Hz and ωpll=80Hz are shown in Fig. 11(b) and Fig.
11(c). It shows that oscillations occur when ωpll=80Hz and
the oscillation frequency is about 95Hz.

TABLE IV
The Factors in G0 when [ωpll/(2ξ)<(−ω1icq0/icd0)<ωpll], (icq0 < 0, icd0 > 0)

Corner Gain Phase Cumulative Cumulative
No. Factor frequency slope (deg) slope phase

(rad/s) (dB/dec) (dB/dec) (deg)
1 ω1Lgicq0/usd0 —- 0 -180 0 -180
2 1 + 2sξ/ωpll ωpll/(2ξ) +20 90 +20 -90
3 1 + sicd0/(-ω1icq0) −ω1icq0/icd0 +20 90 +40 0
4 (1+2sξ/ωpll+s2/ω2

pll)
−1 ωpll -40 -180 0 -180

5 (1 + s/ωCL)−1 ωCL -20 -90 -20 -270

TABLE V
The Factors in G0 when [(−ω1icq0/icd0)>ωpll], (icq0 < 0, icd0 > 0)

Corner Gain Phase Cumulative Cumulative
No. Factor frequency slope (deg) slope phase

(rad/s) (dB/dec) (dB/dec) (deg)
1 ω1Lgicq0/usd0 —- 0 -180 0 -180
2 1 + 2sξ/ωpll ωpll/(2ξ) +20 90 +20 -90
3 (1+2sξ/ωpll+s2/ω2

pll)
−1 ωpll -40 -180 -20 -270

4 1 + sicd0/(-ω1icq0) −ω1icq0/icd0 +20 90 0 -180
5 (1 + s/ωCL)−1 ωCL -20 -90 -20 -270

B. Impact of the Active Power

From the analysis in Section III-B, we can see that when
the active power Ps increases, the gain at the phase-crossover
frequency ωpll will increase and be closer to the stability
boundary of 0dB. In this section, we do simulations to verify
the conclusion that large Ps worsens the small-signal stability
of the current control.

Four cases with active power Ps being 0.5p.u., 0.4p.u.
(inverter), −0.4p.u., and −0.5p.u. (rectifier) are chosen. In these
cases, ωpll=80Hz, and the other parameters are the same with
those in Table I. The Bode plots of the four cases are presented
in Fig. 12(a). It can be seen that the amplitude-frequency curve
moves upward when the active power Ps increases. The value
of G0’s gain at the phase-crossover frequency exceeds 0dB
when Ps equals to 0.5p.u., indicating that the current control is
unstable. Note that, when Ps = −0.4p.u. and −0.5p.u., the VSC
operates as a rectifier whose small-signal stability is excellent.

Fig. 12(b) and Fig. 12(c) show the time domain simulation
results in the cases of Ps=0.5p.u. and −0.5p.u. It can be seen
that the current control is unstable when Ps=0.5p.u., with
oscillations observed.

C. Impact of the Bandwidth of the Current Control

As demonstrated in Section III-B, ωpll < ωCL. Thus, the
bandwidth of the current control doesn’t influence the value
of the gain of G0 at the phase-crossover frequency ω=ωpll,
i.e., it doesn’t influence the current control stability. In this
subsection, we do simulations to verify this conclusion.

Four cases with the current control’s bandwidth being
125Hz, 250Hz, 375Hz and 500Hz are selected. The other
parameters in the test cases are the same with those in Table
I. Fig. 13(a) shows the Bode plots of the four cases. It can be
seen that G0’s gain at the phase-crossover frequency remains
almost unchanged as the current control’s bandwidth increases.

The time domain simulation results of the cases with
ωCL=125Hz and ωCL=500Hz are presented in Fig. 13(b) and
Fig. 13(c). It can be seen that both cases are stable, and that
the d-axis current response is faster when ωCL=500Hz than
that when ωCL=125Hz.
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Fig. 11. Results with different PLL bandwidth.(a): The Bode plots of G0.
(b): The d-axis current responses. (c): Time-domain current responses.

D. Impact of the Reactive Power

As demonstrated in Section III-D, the absolute value of the
reactive power Qs increases, the gain at the phase-crossover
frequency ωpll will increase. In this subsection, we do simula-
tions to verify this conclusion. Two cases with the reactive
power being -0.62p.u.and -0.31p.u. are selected. The other
parameters in the test cases are the same with those in Table
I. Fig. 14(a) shows the Bode plots of the two cases. It can be
seen that G0’s gain at the phase-crossover frequency increases
as the absolute value of the reactive power increases. The time
domain simulation results of the cases with Qs=-0.62p.u. and
Qs=-0.31p.u. are presented in Fig. 14(b) and Fig. 14(c). It can
be seen that both cases are stable, as the G0’s gain increases
when Qs=-0.62p.u. but is still below 0dB.

V. A Criterion For the Bandwidth Design of the PLL

In engineering practice, some system parameters are given
and can’t be adjusted readily or economically, like Lg and icd0.
Up to now, to select a proper bandwidth for the PLL is one
of the most feasible ways to ensure the stability of the VSC
system’s current control.

A. The Criterion For the Bandwidth Design of the PLL

In this section, we propose a criterion to select proper
bandwidth for the PLL based on the transfer function derived.
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Fig. 12. Results with different real power.(a): The Bode plots of G0 . (b):
The d-axis current responses . (c): Time-domain current responses .

The key idea is that if G0’s gain at the phase-crossover
frequency ωpll is smaller than 0dB, the current control will
always be stable under the condition that icq0=0, icd0 , 0 (unit
power factor). And this can be described as

|G0|s= jωpll
=

∣∣∣∣∣∣∣∣
−Lgicd0s

[
1 + s

(
2ξ

/
ωpll

)]
usd0 (1 + s/ωCL)

[
1 + s

(
2ξ

/
ωpll

)
+ s2

/
ω2

pll

]
∣∣∣∣∣∣∣∣
s= jωpll

< 1.

(18)
From (18), ωpll should satisfy the following constraint,

ωpll√(
ωpll

/
ωCL

)2
+1
<

usd0 (2ξ)

Lgicd0

√
(2ξ)2 + 1

, (19)

which demonstrates that the PLL’s bandwidth has an upper
limit when the other system parameters are given. And the
upper limit is inversely proportional to the grid’s equivalent
inductance Lg and the injected active current icd0. Taking the
test case whose parameters are shown in Table I as an example,
by substituting usd0, icd0, Lg and ξ into (19), we can get

ωpll

/√(
ωpll

/
ωCL

)2
+ 1 < 408rad/s(65Hz), and ωpll < 75Hz.

In order to ensure the small-signal stability of the current
control of the test cases in this paper, the bandwidth of the
PLL should not exceed 75Hz, otherwise, the current control
will be unstable. The simulation results in Fig. 11(b) show
that the current control is small-signal stable when ωpll=50Hz
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Fig. 13. Results with different current control bandwidth. (a): The Bode plots
of G0 . (b): The d-axis current responses. (c): Time-domain current responses.

while unstable when ωpll=80Hz, which matches well with this
criterion.

B. Simulation Results with the Two-level Converter Consider-
ing the Outer Loops

The simulation results of the cases considering the outer
loop are presented in Fig. 15 (the PLL’s bandwidth is 70 Hz)
and Fig. 16 (the PLL’s bandwidth is 80 Hz). The parameters
of the outer loop in Table I are used. In the two cases, the
real power is increased to 0.8p.u. and the reactive power is
increased to 0.5p.u.. The system is stable when the PLL’s
bandwidth is 70 Hz. However, it loses stability when the
PLL’s bandwidth is 80 Hz and the oscillations can be observed
in the real/reactive power and the d-axis and q-axis current.
This verifies the analysis in Section III that a smaller PLL’s
bandwidth is helpful to improve the current control stability.

The two-level converter is analyzed in this paper as inte-
grating the wind farms and PVs to the weak grid is really a
big challenge. The MMCs are usually connected to the high
voltage system which might also be a weak grid, however it is
not normal. Also, if the MMC internal loops of the balancing
and circulating energy loops are properly tuned, a two level
and an MMC have similar performance [24]. Then, the weak
grid-tied MMC can be studied with our methodology.
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Fig. 14. Results with different reactive power.(a): The Bode plots of G0 .
(b): The d-axis current responses. (c): Time-domain current responses.

VI. CONCLUSION

In this paper, the PLL’s effect as a high-pass filter and
its impact on the current control stability of the weak-grid-
tied VSC is revealed based on simplified transfer functions.
By neglecting time delay components and the high-frequency
voltage filters, a reduced-order MIMO transfer function and
its equivalent open-loop transfer function is obtained. The
analysis based on the equivalent open-loop transfer function
shows that: The PLL can behave as a high-pass filter in weak-
grid conditions due to the large grid impedance, whereas the
current control behaves as a low-pass filter, making the inner
loop of the weak-grid-tied VSC a band-pass filter; A higher
PLL’s bandwidth will increase the open-loop transfer func-
tion’s maximum gain and the risk of harmonic amplification
or system instability; The VSC system is less stable when it
works as an inverter than as a rectifier, due to the risk of the
local positive feedback in inverter mode; The current controller
has slight impacts on the stability of the inner loop when
its bandwidth is 0.1 to 0.2 times of the switching frequency
of the power electronic switches. Based on the equivalent
open-loop transfer function, an effective criterion that provides
straightforward guidance for selecting a proper bandwidth of
the PLL to secure the gain stability margin of the inner loop
is further proposed and validated. Future work will discuss the
small-signal stability of the outer loop and the design of the
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Fig. 15. Simulation results considering the outer loop when the PLL’s
bandwidth is 70 Hz.
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Fig. 16. Simulation results considering the outer loop when the PLL’s
bandwidth is 80 Hz.

control correction parts.

Appendix

A. Modelling of the Plant

For simplicity, the AC filter is not considered as it is for
filtering high-frequency harmonics [25]. By applying KVL
across the grid equivalent impedance Rg + jω1Lg, we can get[

sicd
sicq

]
=

 −Rg

Lg
ω1

−ω1
−Rg

Lg

 [ icd
icq

]
+

1
Lg

[
usd − ugd
usq − ugq

]
, (20)

Similarly, by applying KVL across the equivalent impedance
Req + jω1Leq between the VSC and the PCC, we can get[

sicd
sicq

]
=

 −Req

Leq
ω1

−ω1
−Req

Leq

 [ icd
icq

]
+

1
Leq

[
ucd − usd
ucq − usq

]
, (21)

B. Modelling of the VSC Control System

As shown in Fig. 2, the PLL synchronizes the control
system’s frame to the grid’s frame with us orientation. The
mapping relation of one variable in the two different frames
is Fcf

dq = Tdq2dqcf Fdq, where F denotes us, uc, ug or ic, the
superscript ”cf” denotes that the variable is in the the control
system’s dq frame, and Tdq2dqcf is written as

Tdq2dqcf =

[
cos θpll sin θpll
− sin θpll cos θpll

]
, (22)

where θpll is the initial phase of the PCC voltage observed
by PLL. In the following, we explain each part of the control
system in Fig. 1 in detail.

1) PLL: The representation of the PLL shown in Fig. 1 is
as follows,

θ=
(
GPI−pllucf

sq + ω1

) 1
s
, (23)

where GPI−pll is the transfer function of the PI controller in
the PLL, and can be written as

GPI−pll=kp pll

(
1 +

1
sTi pll

)
, (24)

where kp pll and Ti pll are the proportional coefficient and
the integral time constant of GPI−pll, and can be obtained by
kp pll = 2ξωpll/usd0, Ti pll = 2ξ/ωpll. And ωe = GPI−pll(s)ucf

sq.
2) Current Control: The current control can be described as ucf∗

cd = Gfucf
sd +GCL(icf∗

cd − icf
cd) − ω1Leqicf

cq

ucf∗
cq = Gfu

cf
sq +GCL(icf∗

cq − icf
cq) + ω1Leqicf

cd

, (25)

where Gf is the voltage filter, and GCL is the PI controller in
the inner loop. Gf and GCL can be expressed as

Gf =
ωf

s + ωf
=

1
1+sTf

GCL = kp cl

(
1 +

1
sTi cl

) , (26)

where ωf is the bandwidth of the voltage filter, Tf is the
time constant of the voltage filter, kp cl and Ti cl are the
proportional coefficient and the integral time constant of
GCL, respectively, and they can be obtained by kp cl=ωCLLeq,
ki cl=ωCLReq = kp cl

/
Ti cl, where ωCL is the bandwidth of the

inner loop.
The time delay caused by the signal processing and trans-

mission in the VSC’s control system can be modelled as a
lumped time delay from ucf∗

c to ucf
c , and can be described by

ucf
cd = Gducf∗

cd , u
cf
cq = Gducf∗

cq , (27)

where Gd is the time delay function and can be described as

Gd =
1

1+sTd
, (28)
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where Td is the delayed time of the PWM, the measurement
and the control communication. The voltage signal ucf

c is in the
dq frame of the control system and needs to be transformed
to the dq frame of the grid by[

u∗cd
u∗cq

]
= T−1

dq2dqcf

[
ucf

cd
ucf

cq

]
. (29)

The VSC generates the voltage uc by modulating the DC
voltage through the on-off actions of the switches in the VSC,
which is described by

ucd =
u∗cd

vdc0
vdc, ucq =

u∗cq

vdc0
vdc, (30)

where vdc is the DC voltage, and vdc0 is its steady-state value.
3) Outer Loop Control: The outer loop can be described by

icf∗
cd =GPC(P∗s − Pcf

s ), icf∗
cq =GAC(U∗s − Ucf

s ), (31)

where GPC and GAC can be described by

GPC = kp PC

(
1 +

1
sTi PC

)
,GQC = −kp QC

(
1 +

1
sTi QC

)
,

(32)
where kp PC and Ti PC are the proportional coefficient and
integral time constant of GPC respectively, and kp QC and
Ti QC are the proportional coefficient and integral time
constant of GQC respectively. They can be obtained by
Ti PC=Ti QC=1/ωCL, kp PC = ωOL PCTi PC/(1.5usm), kp QC =

−ωOL QCTi QC
/
(1.5usm), where usm is the magnitude of the

grid’s phase voltage.
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