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Abstract—Right-half-plain (RHP) zeros can significantly dete-
riorate a control system’s dynamic performances as it exhibits
non-minimum-phase behaviors. In this paper, we investigate the
occurrence mechanism of RHP zeros in weak-grid-tied VSCs as
well as provide guidance for minimizing their effects. A reduced-
order multi-input multi-output (MIMO) transfer function of the
weak-grid-tied VSC is firstly obtained. Then, the single-input
single-output (SISO) transfer function to study the impact of
the RHP zeros on the power response is further derived. The
existence of RHP zeros is examined by applying the Routh
criterion on the numerator of the SISO open-loop transfer
function. We find that RHP zeros can exist either when the
VSC works as an inverter or a rectifier. Furthermore, large
grid impedance values as well as operation points with high
active power values can result in a non-minimum-phase system.
It is also shown that RHP zeros limit the minimum PLL
bandwidth. Simulation results and RTDS experiments validate
the correctness of the analysis and the conclusions obtained.

Index Terms—Weak-grid-tied VSC, non-minimum-phase ze-
ros, MIMO transfer function, small-signal model, controller
bandwidth

I. Introduction

VOLTAGE source converters (VSCs) have been commonly
used in the direct-drive permanent magnet synchronous

generator (PMSG), the photovoltaic (PV) and the VSC based
high voltage direct current transmission (VSC-HVDC) to
transfer power in the AC grid [1], [2]. In spite of many
advantages, there exist challenges when the VSC interfaces to
a weak grid whose equivalent impedance is large [3]. These
challenges include stability issues, poor dynamic margins,
resonances and non-minimum phase characteristics, which can
severely deteriorate the dynamic performance of the weak grid
connected VSCs [4]–[7]. The non-minimum-phase charac-
teristic influences the system significantly, as non-minimum-
phase zeros limit the control bandwidth of the system [8].

The non-minimum-phase system usually refers to a system
that has right half plane (RHP) zeros, i.e., non-minimum-phase
zeros. The step response of a non-minimum-phase system
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usually has undershoot behaviors that the step response has
a dip before it first gets to the reference value. Also, the
RHP zero, z causes a large phase delay at the frequency |z|,
and the system control bandwidth is usually limited below
|z| /2 to ensure acceptable phase stability margins [8]. Zhang
et al. reported the non-minimum-phase phenomena in the
weak-grid-tied VSC system in [9], but in-depth study on
the mechanism and impacts of the key parameters were not
carried out. The difficulty to achieve a good control of a non-
minimum-phase system highlights the necessity of a thorough
investigation of the non-minimum-phase phenomena in weak-
grid-tied VSCs. However, according to our knowledge, few
research efforts have been devoted to this topic.

To analyze the RHP zeros of weak-grid-tied VSCs, a suit-
able model should be selected first. Till now, several models
have been proposed to investigate the small-signal stability
of the weak-grid-tied VSCs. Sun et al. [10], [11] proposed
an impedance-based method for VSCs connecting to weak
grids, indicating that the VSC-grid interconnections are stable
when the ratio of the grid impedance to the inverter output
impedance satisfies the Nyquist criterion [12]. Hu et al. [1],
[13] proposed the complex-torque-based method to analyze
the stability of the VSC that connects to a high-impedance
AC grid, by analogy with the sub-synchronous oscillation
analysis of synchronous generators [14]. Zhou et al. applies
the eigenvalue analysis method to the stability analysis of
the target system, and it can cast a full picture of the modal
oscillation and the damping characteristics [3], [4], [15]–[17].
However, the eigenvalue analysis only focuses on the closed-
loop poles. The impedance and complex torque method are
also limited for providing insights into the RHP zeros.

One classical method that can be used to study the sys-
tem’s RHP zeros is the transfer function, whose numerator’s
roots are the zeros. In literature, transfer functions with high
dimensions have been derived for studying grid-connected
VSCs [18], [19]. However, the high dimension and intricacy
limit the application of the transfer function-based method on
investigating RHP zeros [9]. To overcome the limitation, the
transfer function should be carefully simplified with appropri-
ate dimension reduction. It is noticed that the non-minimum-
phase phenomena are mainly related to the outer loop of the
VSC. The time constant of the inner current loop is much
faster than that of the outer loop. Some researchers suggested
that the inner current loop dynamics can be neglected due to
different time scales [20], [21].

This paper focuses on analyzing the non-minimum-phase
phenomena of the weak-grid-tied VSC system using reduced-
order transfer functions [19], [20]. Compared with the prior
work [9], [19], [20], our paper provides an in-depth investiga-
tion of the underlying mechanism of the non-minimum-phase
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Fig. 1. A diagram of the target system where a VSC connects to a weak
grid.
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Fig. 2. Non-minimum-phase phenomena of the power step responses with
SCR=1.1.

phenomena of the weak-grid-tied VSC using a simplified
transfer function. We also provide a comprehensive control
gain tuning recommendations for mitigating the RHP zeros
effect based on the analytical study of the resulting transfer
function. Firstly, Section II presents the weak-grid-tied VSC
system and the non-minimum-phase phenomena observed.
Secondly, the reduced-order multi-input multi-output (MIMO)
transfer functions of the VSC system are obtained in Section
III by neglecting the fast current control dynamics. In Section
IV, the single-input single-output (SISO) transfer function for
a specific input-output pair is obtained, and the Routh criterion
is applied to examine the RHP zeros where the physical
understanding of this phenomena is demonstrated. The impact
of key system parameters on RHP zeros and the guidance for
improving dynamic performance are discussed. In Sections
V and VI, Simulink simulations and RTDS experiments are
performed. Simulation results verify the correctness of our
analysis on the non-minimum-phase phenomena and the ef-
ficacy of the guidance for the performance improvement.

II. Glimpse of the Non-minimum-phase System

In this section, we provide a glimpse of the weak-grid-
tied VSC system and the non-minimum-phase phenomena
observed.
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Fig. 3. Undershoot behaviors of the typical non-minimum-phase systems.

Fig. 1 shows the schematic of the typical scenario, where
a VSC connects to a weak grid. The converter controller is
composed by an inner loop, an outer loop and a PLL. The
PLL provides the synchronization with the grid, the inner loop
controls the active and reactive current through the converter
line reactor and the outer loop generates references for the
inner loop to control the power and the AC voltage magnitude
[3], [4]. And ug, us, uc are the grid voltage, the PCC (point
of common coupling) voltage and the VSC output voltage, ic
is the current injecting to the grid.

Fig. 2 shows the step responses of the input-output pair
P∗s ∼ Ps of the VSC when it connects to a grid with SCR=1.1
and a grid with SCR=5. It shows that the step response
directly increases to its reference when SCR=5. While, the
step response initially increases, then decreases, and finally
increases to its reference when SCR=1.1, indicating that the
grid-tied VSC is a non-minimum-phase system.

The open-loop transfer functions of three typical non-
minimum-phase systems in [22] are as follows,

G1 =
− (s − 1)
(s + 1)2 ,G2 =

(s − 1)2

(s + 1)3 ,G3 =

(
2s2 − s + 1

)
(s + 1)3 , (1)

where G1 has one positive RHP zero, G2 has two positive RHP
zeros, and G3 has two non-real RHP zeros. And their step
responses are shown in Fig. 3. The step responses of the three
systems all exhibit undershoot (inverse response) behaviors,
i.e., the step responses have dips before they first reach the
reference values.

The step response of the VSC in Fig. 2 with SCR=1.1 is
similar to that of G3 in Fig. 3 that has two non-real RHP non-
minimum-phase zeros. To understand the non-minimum-phase
phenomena better and guide the performance improvement,
we need to further obtain the transfer function of the target
system, and explore the impacts of the key parameters on the
existence of RHP zeros.

III. Transfer Functions of the Grid-Tied VSC System

In this section, we derive the simplified MIMO trans-
fer function of the grid-tied VSC system, based on which
the analysis of the non-minimum-phase phenomena can be
performed. Due to the different time scales of the inner
current loop and the outer loop, it is assumed that the inner
current loop dynamics can be neglected, i.e., the current can
track its reference instantaneously in the control system’s dq
synchronous frame [20], [21].
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A. The Analytical MIMO Transfer Function

The grid and converter control modeling mathematical for-
mulation can be seen in the Appendix. As the power converter
is orientated using a PLL, two references frame will exist, one
for the electrical network and one for the controller as shown
in Fig. 4. The superscript ”cf” denotes that the variable is in
the the control system’s dq synchronous frame.

The ωe is the angular frequency difference between the
two dq frames , and ω1 is 2π50rad/s. Fig. 5 shows the block
diagram of the linearized representation of the VSC system,
which consists of the small-signal models of the plant, the
inner loop and the outer loop.

From Figs. 1 and 5, the VSC has two inputs ∆P∗s , ∆U∗s and
two outputs ∆Ps, ∆Us. Thus, a MIMO (two-input-two-output)
transfer function is required to describe the dynamics of the
grid-tied VSC system.

The relationship between the outputs of ∆Ps, ∆Us and the
perturbations of ∆icd, ∆icq and ∆icf∗

cd , ∆icf∗
cq can be written as[

∆Ps
∆Us

]
=

[
m n
p q

] [
A B
C D

] [
∆icf∗

cd
∆icf∗

cq

]
, (2)

where m, n, p, and q are expressed as m = 1.5
[
usd0+icq0Xg+icd0Rg

]
, p = 0

n = 1.5
[
−icd0Xg+icq0Rg

]
, q = −Xg

, (3)

where subscripts of d and q are the direct and quadrature-axis
components in synchronous reference frame, the subscript 0
denotes steady-state value, ic is the current injected to the PCC,
us is the PCC voltage, ug is the equivalent grid voltage, uc is
the output voltage of the VSC, Rg and Xg are the equivalent
resistance and inductance of the AC grid respectively. A, B, C
and D are described by A = 1

1+GpllXgIcq0
, B = 0

C = GpllXgIcd0

1+GpllXgIcq0
,D = 1

, (4)
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Fig. 6. Comparison of the magnitude-frequency responses of the detailed
and the simplified models: SCR=1.1, SCR=2.

where Gpll is the transfer function of the PLL that is written
as

Gpll =

(
2ζωplls + ω2

pll

)
/usd0

s2 + 2ζωplls + ω2
pll

. (5)

where ζ is the damping ratio, ωpll is the bandwidth of the PLL.
The outer loop expressed in (30) can be linearized as[

∆icf∗
cd
∆icf∗

cq

]
=

[
GPC 0

0 GAC

] ([
∆P∗s
∆U∗s

]
−

[
∆Pcf

s
∆Ucf

s

])
, (6)

where GPC and GAC are the PI controllers of the active power
control and the AC voltage control. It can be proved that{

∆Pcf
s =∆Ps

∆Ucf
s =∆Us

. (7)

Then, the MIMO transfer function can be obtained by
substituting (6), (7) into (2),[

∆Ps
∆Us

]
=

[
1 + X Y

M 1 + N

]−1 [
X Y
M N

] [
∆P∗s
∆U∗s

]
, (8)

where X, Y , M and N are short for the expressions of{
X = GPC (mA + nC) ,Y = GAC (mB + nD)
M = GPC (pA + qC) ,N = GAC (pB + qD) . (9)

Also, equation (8) can be reformed and written as[
∆Ps
∆Us

]
=

 GPC0
1+GPC0

Y
(1+X)

1+GAC0
M

(1+N)

1+GPC0

GAC0
1+GAC0


[
∆P∗s
∆U∗s

]
, (10)

where GPC0 and GAC0 can be described by{
GPC0 = X − Y M

(1+N)
GAC0 = N − Y M

(1+X)
. (11)

B. Model Verification
The magnitude-frequency responses of the MIMO transfer

function in (10) and the original detailed model in Fig. 1
that built in the Matlab are compared with each other to
validate its feasibility, as shown in Fig. 6 when SCR=1.1 and
2. The other parameters are the same with those in Table III
in Section V. We can see that the magnitude-frequency curves
of the simplified MIMO description and the detailed model
match well with each other in the medium and low-frequency
that above -3dB. Thus, the reduced-order transfer function is
accurate enough for investigating the outer loop and the PLL
related non-minimum-phase dynamics.
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TABLE I
The Routh Table

1 2 3
1(s3) a0 a2 0
2(s2) a1 a3 0
3(s1) b1 0 0
4(s0) c1 0 0

IV. Non-minimum-phase Zeros Analysis

In this section, we first obtain the SISO transfer function
for a specific input-output pair. Then, by applying the Routh
criterion on the numerator of the open-loop transfer function of
the SISO representation, RHP zeros can be examined qualita-
tively. The physical understanding and inherent mechanism of
non-minimum-phase behavior are demonstrated. The impacts
of key system parameters on the RHP zeros and the guidance
for the dynamic performance improvement are discussed.

A. SISO Transfer Functions for Specific Input-Output Pairs

From the MIMO transfer function shown in (10), we can
see that there are 4 input-output pairs and can get 4 cor-
responding SISO transfer functions. Theoretically, the non-
minimum-phase phenomena will occur when the system’s
transfer function has RHP zeros.

To be consistent with Fig. 2, we analyze the non-minimum-
phase phenomena for the input-output pair P∗s ∼ Ps. From
(10), the corresponding SISO transfer function can be derived
as

∆Ps=
GPC0

1 +GPC0
∆P∗s , (12)

where GPC0 is the open-loop transfer function. By substituting
(4) and (9) into (11), GPC0 can be obtained as follows,

GPC0 = GPC
m

1+GpllXgIcq0

(
1 +

n
1 +GACq

GpllXgIcd0

m

)
. (13)

The detailed expression of GPC0 is further shown in (15)
by substituting (31) and (5) into (13), where ωOL PC is the
bandwidth of the active power control, GPC0 1 presents the
active power control and GPC0 2 contains the PLL, the AC
voltage control, the AC system strength, and the active power.
GAC2PC, k1, and k2 in GPC0 2 are written as

GAC2PC=
s

1+s
(
Ti AC+

1
ωOL AC

)
k1 =

Xgicq0

usd0
, k1 ∈ (−1, 1)

k2=
1

ωOL AC

−1.5(icd0Xg)2

usd0m < 0

, (14)

where ωOL AC is the bandwidth of the AC voltage control,
Ti AC is the integral time constant of GAC and Ti AC=1/ωCL,
where ωCL is the bandwidth of the inner loop control.

B. RHP Zeros Examination Based on the Routh Criterion

The non-minimum-phase phenomena will emerge when the
open-loop transfer function GPC0 has RHP zeros. According to
(15), the existence of RHP zeros of GPC0 depends on GPC0 2,
in that GPC0 1 has only one negative zero. The Routh criterion
can be used to check whether GPC0 2 has RHP zeros. Table I
shows the Routh table for equation (a0s3 + a1s2 + a2s + a3 =

0).
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According to the Routh criterion, GPC0 2 has no RHP zeros
if and only if it satisfies

a0 > 0, a1 > 0, a2 > 0, a3 > 0, b1 > 0, c1 > 0 (17)

According to (16), a0 > 0 and a3 = c1 > 0 are satisfied.
Thus, (17) can be simplified to

a1 > 0, a2 > 0, b1 =
a1a2 − a0a3

a1
> 0 (18)

The signs of a1, a2, and b1 depend on k2 once the control
parameters are given. From (14), k2 consists of the AC system
strength (represented by Xg) and the active power (represented
by icd0), indicating that the values of the AC system strength
(SCR) and the active power play important roles in the
formation of the non-minimum-phase system.

Also, the RHP zeros are not changed either the VSC works
as a rectifier (icd0 < 0) or an inverter (icd0 > 0), in that the
Xgicd0 in k2 exists in the form of the squared value according
to (14).

C. Physical Understandings of the Non-minimum-phase Phe-
nomena

According to (14) and (16), the RHP zeros originate from
the negative sign of k2 and the large grid impedance (Xg). The
negative sign of k2 is determined by the coefficient of n in the
linear model of the plant in (3).

Fig. 7 demonstrates the two signal flow branches for the
input-output pair P∗s ∼ Ps. Branch 2 disappears in strong grid
conditions, as C=0 and n=0. In weak grid conditions where
C , 0 and n < 0, branch 2 leads to the non-minimum-phase
phenomena.

By substituting the expressions of ∆icd and ∆icq into the
plant’s linear model ∆Ps=∆Ps1+∆Ps2 = m∆icd + n∆icq, the
expression of ∆Ps is presented in (19) without the outer loops,
where m > 0 and n < 0 according to (3). The undershoot
behavior appears in the active power response because

1) an increase of the active current reference ∆icf∗
cd results

in the increases of the current ∆icd and the power ∆Ps1, as
∆Ps1 = m∆icd where m > 0.

2) an increase of the active current reference ∆icf∗
cd results

in an increase of the current ∆icq and a decrease of the power
∆Ps2, as ∆Ps2 = n∆icq where n < 0.

These are the inherent mechanisms that causes the under-
shoot behavior of the active power response in the converter
dynamics. It can also be proved by (19) that the detailed
expression of ∆Ps1 has a positive sign, while the detailed
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GPC0 =
ωOL PC (sTi PC+1)

s︸                   ︷︷                   ︸
GPC0 1

× m
1.5Usm

[(
s2 + 2ζωplls + ω2

pll

)
+

(
2ζωplls + ω2

pll

)
k2GAC2PC

]
[(

s2 + 2ζωplls + ω2
pll

)
+

(
2ζωplls + ω2

pll

)
k1

]︸                                                                        ︷︷                                                                        ︸
GPC0 2

(15)

GPC0 2 =
m

1.5Usm

(
a0s3 + a1s2 + a2s + a3

)[(
s2 + 2ζωplls + ω2

pll

)
+

(
2ζωplls + ω2

pll

)
k1

] (
1+sTeq AC

) ,where


a0 = Teq AC = Ti AC + 1/ωOL AC > 0
a1 = 1 +

(
Teq AC + k2

)
2ζωpll

a2 = 2ζωpll +
(
Teq AC + k2

)
ω2

pll
a3 = ω

2
pll > 0

(16)

∆Ps=∆Ps1+∆Ps2 = m∆icd + n∆icq= mA∆icf∗
cd + n

(
C∆icf∗

cd +D∆icf∗
cq

)
=

(
s2+2ζωpll s+ω2

pll

)
s2+

(
2ζωpll s+ω2

pll

)
(1+k1)

m∆icf∗
cd +

(
2ζωpll s+ω2

pll

)
s2+

(
2ζωpll s+ω2

pll

)
(1+k1)

k3n∆icf∗
cd + n∆icf∗

cq

=

(
s2 + 2ζωplls + ω2

pll

)
s2+

(
2ζωplls + ω2

pll

) (
1 + Xgicq0

usd0

)1.5
(
usd0+Xgicq0

)
∆icf∗

cd︸                                                                 ︷︷                                                                 ︸
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Fig. 8. Vector diagrams of the VSC before and after a step input is imposed.
(a) The VSC connects to a weak grid; (b) The VSC connects to a strong grid.

expression of ∆Ps2 has a negative sign, which results in the
undershoot behavior.

Fig. 8 uses vector diagrams to display the voltages and
currents in the VSC before and after a step input is imposed
in weak and strong grid conditions, respectively. It is known
that the voltage can change abruptly but the current across
the impedance cannot. When there is a step of P∗s , the output
voltage of the VSC changes abruptly to force the active current
to change. The large active current will lead to a voltage drop
over the grid impedance, especially in weak grid conditions,
see Fig. 8(a). Then the AC voltage control of the VSC will
react to generate a reactive current to increase the AC voltage.
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Fig. 9. Comparison of the step responses in Fig. 7 in weak and strong grid
conditions, where ∆Ps is the total power step response, ∆Ps1 is the power
response in branch1, ∆Ps2 is the power response in branch2, and ∆Us is the
voltage response.

The phasers converge to a new steady state after the dynamics.
While, the voltage drop over the grid impedance is small
enough to be neglected in strong grid conditions, see Fig. 8(b).

Fig. 9 shows the active power step responses of the linear
model in Fig. 7 when Ps=0.85 p.u.. The other parameters
are the same with those in Table III in Section V. In weak
grid conditions, when there is a step input, the d-axis current
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reference will increase and produce a power increase in branch
1, see ∆Ps1 in Fig. 9. At the same time, the q-axis current
in branch 2 in Fig. 7 will increase due to the coupling and
produce a power decrease as n < 0, see ∆Ps2 in Fig. 9. Thus,
the active power step response exhibits undershoot behaviors,
see ∆Ps in Fig. 9. The active power decrease is mainly caused
by the PCC voltage decrease due to lack of reactive power, see
∆Us in Fig. 9, as there is more reactive power compensation
for active power input steps due to the large grid impedance.

In strong grid condition, the grid impedance is small and
the coupling between the active power control and AC voltage
control is very weak. The AC voltage fluctuation is small
enough to be neglected, see ∆Us in Fig. 9 when SCR=5.

D. Impacts of the SCR and the Active Power on the RHP
Zeros

Two cases are presented to investigate the impacts of the
SCR and the active power on the existence of RHP zeros of
the grid-tied VSC for the P∗s ∼ Ps input-output pair. In the
first case, we decrease the SCR from 1.4 to 1.1 when the
VSC injects the same rated active power to the AC grid. In
the second case, we increase the active power from 0.7 p.u. to
1 p.u. when the VSC connects to a weak-grid with SCR=1.1.
The other parameters are the same with those in Table III. The
values of the zeros are shown in Fig. 10 and Fig. 11.

Fig. 10 shows that when SCR decreases, i.e., Xg increases,
the zeros will move toward the right half plane. When SCR
= 1.3 or below with Ps = 1 p.u., the VSC system has two
non-real RHP non-minimum-phase zeros indicating that the
non-minimum-phase phenomena emerge, which is consistent
with the analysis in Section II.

Fig. 11 shows that when Ps increases, the zeros will move
toward the right half plane. When Ps is above 0.8 p.u. with
SCR = 1.1, the grid-tied VSC system has two non-real RH-
P non-minimum-phase zeros and becomes a non-minimum-
phase system.

Fig. 12 presents GPC0’s Bode plots of the cases in Fig. 10
and Fig. 11. And ωc1, ωc2, ωc3 and ωc4 are the gain-crossover
frequencies, and φc1, φc2, φc3 and φc4 are the phase values at
the corresponding gain-crossover frequencies. It can be seen
from Fig. 12 that the open-loop transfer function GPC0 has a
larger phase delay when the system has RHP zeros.

It is well known that the VSC system is stable if and only if
γc=φc − (−180◦) > 0 satisfies, where γc is the phase margin at
ωc. Thus, the large phase delay of the RHP zeros will decrease
the phase margin of the weak-grid-tied VSC system, making
it difficult to achieve an acceptable dynamic performance.
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Fig. 12. Bode plots of GPC0 with varying SCR and varying active power.

E. Impacts of Control Parameters on the RHP Zeros and
Guidance for the Dynamic Performance Improvement

When tuning the converter controller gains, the effect of the
non-minimum phase zeros should be taken into account as they
impose a limitation on the converter response. According to
[8], to ensure an acceptable phase margin, the bandwidth of
the non-minimum-phase system should satisfy

ωb <
|zi|
2
, i = 1, 2. (20)

where, zi (i=1,2) is the RHP zero. It is possible to establish
a relationship between the zeros and the PLL bandwidth.
Table II presents the RHP zeros of GPC0 for different PLL’s
bandwidth and AC voltage control’s bandwidth. Table II shows
that the RHP zeros satisfy

|zi| = kωpll. (21)

where k is a coefficient that approximately equals to 1. Fig.
12 shows that GPC0 has a largest phase decrease slope at
the frequency of ωpll, which also indicates that |zi| ≈ ωpll
satisfies. By combining (20) and (21), the bandwidth of the
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TABLE II
RHP zeros with Different Control Parameters

ACvoltage
control/(rad/s)

PLL/(rad/s) RHP zeros zi |zi | k = |zi |/ωpll

2π6 2π16 70.27±j29.5 76 0.78
2π6 2π14 59.85±j37.3 70.52 0.8
2π6 2π12 49.39±j41.34 64.4 0.85
2π11 2π16 55.18±j78.8 96.2 0.96
2π11 2π14 45.22±j76.29 88.68 1.01
2π11 2π12 35.20±j72.55 80.64 1.07
2π16 2π16 40.86±j101.62 109.53 1.09
2π16 2π14 31.35±j95.68 100.69 1.14
2π16 2π12 21.79±j88.6 91.24 1.21
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Fig. 13. The stable space concerning the three control parameters with
SCR=1.1.

non-minimum-phase system should satisfy

ωb <
kωpll

2
. (22)

Also, it can be seen from Fig. 12 and (15) that the gain-
crossover frequencies satisfy ωb ≈ ωci ≈ ωOL PC, (i =
1, 2, 3, 4). Thus, it yields

ωOL PC <
kωpll

2
. (23)

From Table II and (23), a larger AC voltage control’s
bandwidth and a larger PLL’s bandwidth can help to ensure an
acceptable phase margin when an active power control’s band-
width is given. Equation (23) offers a lower limit constraint
for the bandwidth selection of the PLL.
F. Stable Space Concerning the Control Parameters

A sensitivity analysis is performed to determine the sta-
bility boundaries concerning the three controllers bandwidth
under discussion, the bandwidth of the PLL (denoted by
ωpll), the bandwidth of the AC active power control (denoted
by ωOL PC), and the bandwidth of the AC voltage control
(denoted by ωOL AC). A 3-D space is considered with ωpll,
ωOL PC and ωOL AC all ranging from 2π to 2π20 rad/s, and
3-D plots are presented to show the stable spaces for different
SCRs. 2π20 rad/s is adopted as the PLL’s bandwidth is usually
around 2π20 rad/s [1].

Fig. 13 shows the stable boundaries in the above cube when
SCR=1.1. The dots above the stable boundaries in the cube
correspond to stable systems, while the system is unstable
if the combination of whose three parameters are below the
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Fig. 14. The stable space concerning the three control parameters with
SCR=1.2.

2.8 2.9 3.0 3.1 3.2 3.3

0.8

0.9

1.0

P
s(p

.u
.)

Time (s)

P
s
*

SCR=1.1

SCR=1.15

SCR=1.2

SCR=1.3

SCR=5

Fig. 15. Time-domain simulation results with SCR=1.1, 1.2, 1.3, 1.4 and 5
when ωpll/(2π)=16 Hz, ωOL AC/(2π)=6 Hz, ωOL PC/(2π)=6 Hz.

stable boundaries. It is noted that we only examine the stable
space within the 3-D cube and that there may exist stable
spaces outside. As the SCR can change in a real grid, we also
sweep the SCR to analyze the system sensitivity to different
parameters under different SCRs. Similarly, Fig. 14 presents
the stable space when SCR=1.2. It can be seen that the stable
space sketched by the three control parameters contracts when
the SCR decreases. This means that some control parameters
no longer ensure the system stability when the SCR becomes
small. Thus, the parameters need to be re-tuned for smaller
SCRs.

It can also be seen from Fig. 13 and Fig. 14 that the
stability boundary varies continuously and slowly along the
axis of ωOL PC. While, it varies steeply along the axis of ωpll,
indicating that the system’s stability is more sensitive to the
PLL’s bandwidth.

V. Simulation Results

In this section, we perform time-domain simulations for
the cases in Section IV-D and IV-E in MATLAB/Simulink
to validate the efficacy of the analysis and the guidance for
the performance improvement. A detailed model in Fig. 1
considering the inner current loop is used. The parameters
in Table III are adopted.

A. Impacts of the SCR and the Active Power

Fig. 15 shows the time-domain simulation results of the
first case for the input-output pair P∗s ∼ Ps, with SCR=1.1,
1.2, 1.3, 1.4 and 5. The active power reference P∗s steps
from 0.9 p.u. to 1.0 p.u. at 2.9 s. We can see that the step
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Fig. 17. Time-domain simulation results with ωpll/(2π)=6, 11 and 16 Hz
when SCR=1.1, ωOL AC/(2π)=11 Hz, ωOL PC/(2π)=6 Hz.

responses for SCR=1.1, 1.2, and 1.3 have dips before they first
get to the reference, indicating non-minimum-phase systems.
While, the non-minimum-phase phenomena are not observed
for SCR=1.4 and 5. We can also see that the system becomes
unstable when SCR=1.1. Although the system is stable when
SCR equals to 1.2 or 1.3, its step response is slower.

Fig. 16 shows the time-domain simulation results of the
second case for the input-output pair P∗s ∼ Ps. The active
power reference P∗s has a series of reference step changes from
0.6 p.u. to 1.0 p.u. at 1.7 s, 2.1 s, 2.5 s, and 2.9 s, respectively.
We can see that the undershoot behavior occurs when the
active power increases to 0.9 p.u. from 0.8 p.u.. It can also be
seen that the system becomes unstable when the active power
reference steps from 0.9 p.u. to 1.0 p.u., with the active power
decreasing continuously. The time-domain simulation results
are consistent with the conclusions generated in Section IV-D.

B. Impacts of Control Parameters on the Dynamic Perfor-
mance

According to equation (23) in Section IV-E and Table III,
when ωOL PC/(2π)=6 Hz, ωpll/(2π)>12 Hz should be satisfied
to ensure the system an acceptable system phase margin. Fig.

TABLE III
Parameters of the VSC System

Parameters Unit Value
Rated power/voltage MW/kV 300/110
SCR,Rg,Lg,frequency p.u.,Ω,mH,Hz 1.1, 0.367, 116.7,50
Req,Leq Ω, mH 0.403, 25.7
ωpll,kp pll,ki pll rad/s, rad/(V · s),

rad/(V · s2)
2π16, 1.6 × 10−3, 0.1125

ωOL PC,kp PC,ki PC rad/s, A/W, A/(W · s) 2π6, 3.56×10−7, 2.8×10−4

ωOL AC,kp AC,ki AC rad/s, A/V, A/(V · s) 2π6, 1.3 × 10−3, 1.028
ωCL, kp cl, ki cl rad/s, Ω, V/(A · s) 2π125, 20.17, 316.78
Ps,Us p.u., p.u. 1.0, 1.0
ζ,Td 1, s 0.707, 4.0 × 10−4

Fig. 18. The RTDS used in the experiment.
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Fig. 19. The undershoot behavior in the RTDS experiment when SCR=1.15,
ωpll/(2π)=16 Hz, ωOL AC/(2π)=11 Hz, ωOL PC/(2π)=6 Hz.
17 shows the time-domain simulation results of the case for
the input-output pair P∗s ∼ Ps, with ωpll/(2π)=6, 11, and 16
Hz when ωOL AC/(2π)=11 Hz. The active power reference P∗s
steps from 0.9 p.u. to 1.0 p.u. at 2.25 s. It can be seen that the
step response is stable when ωpll/(2π)=16 Hz and is unstable
when ωpll/(2π)=6, 11 Hz, which is consistent with the analysis.

VI. Realtime validation
In this section, the results obtained using a Real Time

Digital Simulator (RTDS) are provided to validate the analysis
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Fig. 20. RTDS experiment results with SCR=1.15, 1.2, 1.3 when
ωpll/(2π)=16 Hz, ωOL AC/(2π)=11 Hz, ωOL PC/(2π)=6 Hz.

of the non-minimum-phase phenomenon and impacts of the
SCR and the control parameters. The parameters in Table III
are used. Fig. 18 shows the RTDS used in the experiment.

A. Undershoot Phenomenon of the Active Power Response

To verify the analysis in Section IV-C, Fig. 19 presents
the active power step responses from 0.7 p.u. to 0.8 p.u.,
0.9 p.u. and 1 p.u. when SCR=1.15, ωOL AC/(2π)=11 Hz,
ωOL PC/(2π)=6 Hz and ωpll/(2π)=16 Hz. The undershoot be-
havior when the active power steps from 0.9 p.u. to 1 p.u. can
be observed and described as follows.

When the P∗s steps from 0.9 p.u. to 1.0 p.u., the output
voltage ucd of the VSC increases instantaneously to force the
active current icd to increase during (t1, t2), which leads to the
increase of the PCC voltage usd and the active power. Then,
during (t2, t3), the increase of the active current leads to a
voltage drop over the grid impedance especially in weak grid
conditions, which leads to the decrease of the PCC voltage usd.
The active power also decreases. During (t3, t4) in Fig. 19, the
active current icd continues to increase and the PCC voltage
continues to decrease. The AC voltage control of the VSC
begins to generate a reactive current icq to prevent the decrease
of the AC voltage. At the time instant of t4, the active current
reaches its reference value and PCC voltage usd almost reaches
its minimum value. Then the reactive current icq continues to
increase the PCC voltage and the active power till the system
converges to a new steady state.
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Fig. 21. RTDS experiment results with ωpll/(2π)=6, 11 and 16 Hz when
SCR=1.1, ωOL AC/(2π)=11 Hz, ωOL PC/(2π)=6 Hz.

B. Impacts of the SCR

Fig. 20 shows the RTDS experiment results for the input-
output pair P∗s ∼ Ps, with SCR=1.15, 1.2, 1.3 when
ωOL AC/(2π)=11 Hz, ωOL PC/(2π)=6 Hz and . The active pow-
er reference P∗s steps from 0.9 p.u. to 1.0 p.u. when t=13.37 s.
We can see that the step responses for SCR=1.15 have obvious
dips before getting to the reference, indicating non-minimum-
phase systems. While, the power and PCC voltage dips for
SCR=1.2 and 1.3 are not as deep as SCR=1.15. We can also
see that smaller the SCRs can slow the step response.

C. Impacts of the PLL Bandwidth

Fig. 21 shows the RTDS experiment results for the input-
output pair P∗s ∼ Ps, with ωpll/(2π)=6, 11, and 16 Hz when
SCR=1.15, ωOL AC/(2π)=11 Hz and ωOL PC/(2π)=6 Hz. The
active power reference P∗s steps from 0.9 p.u. to 1.0 p.u. when
t=13.37 s. It can be seen that the step response converges when
ωpll/(2π)= 16 Hz while has oscillations when ωpll/(2π)=6, 11
Hz, verifying that a larger PLL’s bandwidth can improve dy-
namic performance when the active power control’s bandwidth
is given.

VII. Conclusions

In this paper, the non-minimum-phase phenomenon of
weak-grid-tied VSCs is investigated. Based on the open-loop
transfer function of a specific SISO input-output pair P∗s ∼ Ps,
the RHP zeros are firstly examined. We find that large grid
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impedance and large injected active power are the physical
origins of the non-minimum-phase zeros. The non-minimum-
phase system has a large phase delay and presents very
poor dynamic performances as the phase margin is reduced
and the control bandwidth is limited by the RHP zeros. It
is concluded that the RHP zeros will limit the minimum
PLL bandwidth. Simulink simulations and RTDS experiments
are performed to validate the theoretical analysis. The time-
domain simulation and RTDS experiments results agree with
the theoretical predictions, which verifies the analysis of this
paper and confirms the importance of non-minimum-phase
zeros in the stability of weak-grid-tied converters.

Appendix

A. Modelling of the Plant

By applying KVL over the grid equivalent impedance in the
frame of the grid, we obtain −Rg

Lg
ω1

−ω1
−Rg

Lg

 [ icd
icq

]
+

1
Lg

[
usd − ugd
usq − ugq

]
=

[
0
0

]
. (24)

By applying KVL over the equivalent impedance between the
VSC and the PCC in the grid’s frame, we obtain −Req

Leq
ω1

−ω1
−Req

Leq

 [ icd
icq

]
+

1
Leq

[
ucd − usd
ucq − usq

]
=

[
0
0

]
, (25)

where Req and Leq are the equivalent resistor and inductor
between the VSC and the PCC respectively.

The magnitude of the PCC voltage Us and the active/reactive
power injected to the power grid can be described by Us =

√
u2

sd + u2
sq

Ps = 1.5
(
usdicd+usqicq

)
,Qs = 1.5

(
usqicd−usdicq

) . (26)

B. Modelling of the VSC Control System

In Fig. 4, the mapping relation of one variable in the two
different frames is Fcf

dq = Tdq2dqcf Fdq,
where F denotes us, uc, ug or ic, the superscript ”cf” denotes

that the variable is in the the control system’s dq frame, and
Tdq2dqcf can be written as

Tdq2dqcf =

[
cos θpll sin θpll
− sin θpll cos θpll

]
, (27)

where θpll is the initial phase of the PCC voltage calculated
by PLL. Each part of the control system in Fig. 1 can be
demonstrated in detail as follows.

1) PLL: The PLL shown in Fig. 1 can be described by

θ=
(
GPI−pllucf

sq + ω1

) 1
s
, (28)

where GPI−pll is the PI controller and can be written as

GPI−pll=kp pll

(
1 +

1
sTi pll

)
, (29)

where kp pll and Ti pll are the proportional coefficient and the
integral time constant of GPI−pll. They can be obtained by
kp pll = 2ζωpll/usd0, Ti pll = 2ζ/ωpll. And ωe can be described
by ωe = GPI−pll(s)ucf

sq.

2) Outer Loop Control: The outer loop can be described by

icf∗
cd =GPC(P∗s − Pcf

s ), icf∗
cq =GAC(U∗s − Ucf

s ), (30)

where GPC and GAC can be described by

GPC = kp PC

(
1 +

1
sTi PC

)
,GAC = −kp AC

(
1 +

1
sTi AC

)
,

(31)
where kp PC and Ti PC are the proportional coefficient and
integral time constant of GPC respectively, and kp AC and
Ti AC are the proportional coefficient and integral time
constant of GAC respectively. They can be obtained by
Ti PC=Ti AC=1/ωCL, kp PC = ωOL PCTi PC/(1.5usm), kp AC =

ωOL ACTi PC

/
Xg, where usm is the magnitude of the grid’s

phase voltage.
3) Inner Loop Control: According to the assumption, the

inner current loop can be described by

icf
cd=icf∗

cd , i
cf
cq=icf∗

cq , (32)

where the superscript of * means the reference value.
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