11 research outputs found

    Involvement of EphB1 Receptors Signalling in Models of Inflammatory and Neuropathic Pain

    Get PDF
    EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies

    Hysteresis Modeling and Compensation of Fast Steering Mirrors with Hysteresis Operator Based Back Propagation Neural Networks

    No full text
    Fast steering mirrors (FSMs), driven by piezoelectric ceramics, are usually used as actuators for high-precision beam control. A FSM generally contains four ceramics that are distributed in a crisscross pattern. The cooperative movement of the two ceramics along one radial direction generates the deflection of the FSM in the same orientation. Unlike the hysteresis nonlinearity of a single piezoelectric ceramic, which is symmetric or asymmetric, the FSM exhibits complex hysteresis characteristics. In this paper, a systematic way of modeling the hysteresis nonlinearity of FSMs is proposed using a Madelung’s rules based symmetric hysteresis operator with a cascaded neural network. The hysteresis operator provides a basic hysteresis motion for the FSM. The neural network modifies the basic hysteresis motion to accurately describe the hysteresis nonlinearity of FSMs. The wiping-out and congruency properties of the proposed method are also analyzed. Moreover, the inverse hysteresis model is constructed to reduce the hysteresis nonlinearity of FSMs. The effectiveness of the presented model is validated by experimental results

    Interference effects on harmonic generation from H-2(+) in nonhomogeneous laser field

    No full text
    By solving the time-dependent Schrodinger equation both in simplified one-dimensional coordinate and three-dimensional cylindrical coordinate systems, the high-order harmonic generation from H-2(+) in spatially symmetric and asymmetric nonhomogeneous laser fields was studied. At large internuclear distances, minima were clearly observed in high energy part of harmonic spectra, which can be attributed to two-center interference in diatomic molecule. Compared with previous studies, the minima in nonhomogeneous laser field are more distinct. Remarkably, the positions of the minima are different in these two types of fields, which demonstrate that interference effects are greatly influenced by laser parameters. Besides, the asymmetric nonhomogeneous field leads to an asymmetric recollision of the ionized electron, and both odd and even order harmonics could be emitted, which is explained in detail based on quantum dynamics calculations. (C) 2016 Optical Society of Americ

    Confidence Calibration for Intent Detection via Hyperspherical Space and Rebalanced Accuracy-Uncertainty Loss

    No full text
    Data-driven methods have achieved notable performance on intent detection, which is a task to comprehend user queries. Nonetheless, they are controversial for over-confident predictions. In some scenarios, users do not only care about the accuracy but also the confidence of model. Unfortunately, mainstream neural networks are poorly calibrated, with a large gap between accuracy and confidence. To handle this problem defined as confidence calibration, we propose a model using the hyperspherical space and rebalanced accuracy-uncertainty loss. Specifically, we project the label vector onto hyperspherical space uniformly to generate a dense label representation matrix, which mitigates over-confident predictions due to overfitting sparse one-hot label matrix. Besides, we rebalance samples of different accuracy and uncertainty to better guide model training. Experiments on the open datasets verify that our model outperforms the existing calibration methods and achieves a significant improvement on the calibration metric

    Dependence of high-order-harmonic generation on dipole moment in SiO2 crystals

    No full text
    High-order-harmonic generation in alpha-quartz SiO2 is theoretically investigated under a strong laser field by solving the extended semiconductor Bloch equations. The accurate band structures as well as dipole moments between different bands are obtained from state-of-the-art first-principles calculations. We find that the shapes of k-space-dependent dipole moments play an important role in harmonic generation. The calculated results show that harmonic conversion efficiency is significantly enhanced and the cutoff energy is distinctly increased when the dipole moments change greatly along a valley in the k direction in the solid. Based on that dependence on the dipole moment, we also show that symmetry groups greatly affect the harmonic spectra from the solid materials. Moreover, a two-color synthesized field is used to achieve a supercontinuum harmonic spectrum near the cutoff region, and isolated attosecond pulses can be obtained directly by filtering out the harmonic radiation. We hope the contribution presented in this work provides a useful reference for future studies on laser-crystal interactions

    Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7

    No full text
    Abstract Background Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. Results A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. Conclusions A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance

    Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping

    Get PDF
    Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most fatal pests of soybean (Glycine max (L.) Merr.) worldwide and causes huge loss of soybean yield each year. Multiple sources of resistance are urgently needed for effective management of SCN via the development of resistant cultivars. The aim of the present study was to investigate the genetic architecture of resistance to SCN HG Type 0 (race 3) and HG Type 1.2.3.5.7 (race 4) in landraces and released elite soybean cultivars mostly from China. A total of 440 diverse soybean landraces and elite cultivars were screened for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7. Exactly 131 new sources of SCN resistance were identified. Lines were genotyped by SNP markers detected by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 36,976 SNPs were identified with minor allele frequencies (MAF) > 4% that were present in 97% of all the genotypes. Genome-wide association mapping showed that a total of 19 association signals were significantly related to the resistance for the two HG Types. Of the 19 association signals, eight signals overlapped with reported QTL including Rhg1 and Rhg4 genes. Another eight were located in the linked regions encompassing known QTL. Three QTL were found that were not previously reported. The average value of female index (FI) of soybean accessions with resistant alleles was significantly lower than those with susceptible alleles for each peak SNP. Disease resistance proteins with leucine rich regions, cytochrome P450s, protein kinases, zinc finger domain proteins, RING domain proteins, MYB and WRKY transcription activation families were identified. Such proteins may participate in the resistant reaction to SCN and were frequently found in the tightly linked genomic regions of the peak SNPs. GWAS extended understanding of the genetic architecture of SCN resistance in multiple genetic backgrounds. Nineteen association signals were obtained for the resistance to the two Hg Types of SCN. The multiple beneficial alleles from resistant germplasm sources will be useful for the breeding of cultivars with improved resistance to SCN. Analysis of genes near association signals may facilitate the recognition of the causal gene(s) underlying SCN resistances

    Pixel-Bit

    No full text
    Resumen basado en el de la publicaciónEl guión cinematográfico ha sido tratado de formas muy diferentes a lo largo de la historia. Si bien, las primeras películas carecían de guión y eran producciones sencillas de argumento y con escasez de medios, con la llegada de Méliès al mundo del cine el tema de la planificación de la producción adquirió cierto relieve e importancia. Sirviéndose de técnicas teatrales creó escenarios, trucos, hizo uso de la iluminación artificial, y utilizó la cámara de forma parecida a como es usada en el siglo XX. Los medios cinematográficos, televisivo, videográfico y los avances de la tecnología electrónica audiovisual han generado una dinámica de la producción en constante evolución y sometida a una constante revisión de métodos y medios. Por lo tanto, en la planificación de guiones lo definitivo, no existe.ES
    corecore