137 research outputs found

    Lasing from semiconductor microring on the end of an optical fiber

    Get PDF
    Isolated InGaAsP microrings with an outer diameter of 5.8 mum, a width of 1 mum, and a thickness of 0.41 mum were fabricated by epitaxial separation. Individual devices were bonded to multimode optical fiber using Van der Waals forces and optically pumped through the fiber. Lasing around 1505 nm was measured under pulsed and cw pumping at room temperature. The threshold pump power for pulsed operation was estimated to be 38 and 80 muW for cw operation. Multiple radial and azimuthal modes were present due to strong, three-dimensional confinement. Under strong pulsed pumping thermal effects caused the emission wavelength to chirp. (C) 2002 American Institute of Physics. (DOI: 10.1063/1.1496496

    Molecular Cloning and Expression Analysis of the Endogenous Cellulase Gene MaCel1 in Monochamus alternatus

    Get PDF
    The purpose of this study was to characterize the endogenous cellulase gene MaCel1 of Monochamus alternatus, which is an important vector of Bursaphelenchus xylophilus, a pine wood nematode, which causes pine wilt disease (PWD). In this study, MaCel1 was cloned by rapid amplification of cDNA end (RACE), and its expression analyzed by RT-qPCR (real-time quantitative PCR detecting). A total of 1778 bp of cDNA was obtained. The encoding region of this gene was 1509 bp in length, encoding a protein containing 502 amino acids with a molecular weight of 58.66 kDa, and the isoelectric point of 5.46. Sequence similarity analysis showed that the amino acids sequence of MaCel1 had high similarity with the beta-Glucosinolate of Anoplophora glabripennis and slightly lower similarity with other insect cellulase genes (GH1). The beta-D-Glucosidase activity of MaCel1 was 256.02 +/- 43.14 U/L with no beta-Glucosinolate activity. MaCel1 gene was widely expressed in the intestine of M. alternatus. The expression level of MaCel1 gene in male (3.46) and female (3.51) adults was significantly higher than that in other developmental stages, and the lowest was in pupal stage (0.15). The results will help reveal the digestive mechanism of M. alternatus and lay the foundation for controlling PWD by controlling M. alternatus

    Detection of Atrial Fibrillation Using Decision Tree Ensemble

    Get PDF
    2017 PhysioNet/CinC Challenge proposed a global competition for classifying a short single ECG lead recording into normal sinus rhythm, atrial fibrillation (AF), alternative rhythm, and unclassified rhythm. This study developed and evaluated a pragmatic approach to solve the challenge, which was based on a decision tree ensemble with 30 features from ECG recording. The model was trained using the AdaBoost.M2 algorithm. The results reported here were obtained using 100-fold cross-validation, and the lowest MSE was 0.12 with the maximum number of splits of 55, and the number of trees of 20. The entry was tested and scored in the second phase of the challenge. The achieved scores for "Normal", "AF", "Other", were 0.93, 0.86, and 0.79, respectively, while the F1 measure was 0.86, and the official overall score was 0.82

    Gut Bacterial Communities of Lymantria xylina and Their Associations with Host Development and Diet

    Get PDF
    The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria

    A review of ant nests and their implications for architecture

    Get PDF
    This paper discusses the latest progress in research on ant nests and explores innovative scientific concepts associated with underground ant nests from the perspective of bionics. The methods used by scholars to study the structure of ant nests and the interaction between the structure itself and the individual ants are investigated. The structural characteristics of the ant nest, its internal environment and ventilation characteristics are discussed in detail. In addition, this paper presents an innovative project in which the effect of underground ant nests on soil geotechnical properties and the effect of calcined ant nest soil powder, from the perspective of civil engineering, are addressed. Practical examples of the application of the structural and inter-relational aspects of subterranean ant nests in the field of architectural bionics are also provided, from the perspectives of construction, morphology, function and material. This review attempts to integrate civil engineering, architecture and biology, enlighten architects and biologists on converging their thinking, provide new ideas regarding underground ant colony nests, and provide references for long-term human habitation

    Ventilation simulation in an underground ant nest structure of Camponotus japonicus Mayr

    Get PDF
    Ants are ancient animals on the earth and are known as excellent architects in the animal kingdom. The structure and performance of their nests are full of remarkable mysteries. At present, there are only a limited number of studies on the ventilation performance of underground ant nest structures. In this study, the nests of Camponotus japonicus Mayr were collected manually, and a three-dimensional digital model of the ant nest structure was obtained by the method of industrial CT scanning. The ventilation performance of the Camponotus japonicus Mayr nest structure was numerically simulated using the finite element analysis software, FLUENT. By changing the air inlet and outlet of the nest, the pressure changes inside the nest and the trajectory of the air flow inside the nest could be calculated and analysed, in order to explore the ventilation characteristics of the underground nest structure during natural ventilation. It was found that the ventilation environment inside the nest was stable, and that the external air flow had little effect on the life of the ants inside the nest

    Study on rock-breaking efficiency evaluation of TBM disc cutters based on Rostami prediction equations

    Get PDF
    As the main cutting tool of Tunnel Boring Machine (TBM) for rock-breaking, the rock-breaking efficiency of TBM disc cutters directly affects the TBM’s boring speed, which in turn affects the overall progress of the tunnelling project. Therefore, a simple and accurate evaluation method of the rock-breaking efficiency of TBM disc cutters is an essential prerequisite to improve the rock-breaking performance of TBM. In this paper, the classical force prediction equations of disc cutters were summarized and the applicability of each equation for the constant cross-section disc cutters was analyzed. The calculation equation of the specific energy per ring of TBM rock-breaking was derived based on the Rostami prediction equations and the specific energy theory for disc cutter rock-breaking. The specific energy per ring equation was verified through a practical engineering case. The results show that the maximum relative error of the effective thrust force and the effective torque of the cutter head based on the Rostami force prediction equations is 9.8%. The relative error of the specific energy per ring is 8.0%, which indicates that the prediction of the specific energy per ring equation can accurately reflect the rock-breaking efficiency of disc cutters. The derived equation of the specific energy per ring can not only simplify the rock-breaking efficiency evaluation of TBM disc cutters, but also serve as a valuable reference for practical engineering projects

    Genetic Testing for Steroid-Resistant-Nephrotic Syndrome in an Outbred Population

    Get PDF
    Background: Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children and young adults. Despite advances in genomic science that have led to the discovery of >50 monogenic causes of SRNS, there are no clear guidelines for genetic testing in clinical practice.Methods: Using high throughput sequencing, we evaluated 492 individuals from 181 families for mutations in 40 known SRNS genes. Causative mutations were defined as missense, truncating, and obligatory splice site variants with a minor allele frequency <1% in controls. Non-synonymous variants were considered pathogenic if determined to be deleterious by at least two in silico models. We further evaluated for differences in age at disease onset, family history of SRNS or chronic kidney disease, race, sex, renal biopsy findings, and extra-renal manifestations in subgroups with and without disease causing variants.Results: We identified causative variants in 40 of 181 families (22.1%) with SRNS. Variants in INF2, COL4A3, and WT1 were the most common, accounting for over half of all causative variants. Causative variants were identified in 34 of 86 families (39.5%) with familial disease and 6 of 95 individuals (6.3%) with sporadic disease (χ2p < 0.00001). Family history was the only significant clinical predictor of genetic SRNS.Conclusion: We identified causative mutations in almost 40% of all families with hereditary SRNS and 6% of individuals with sporadic disease, making family history the single most important clinical predictors of monogenic SRNS. We recommend genetic testing in all patients with SRNS and a positive family history, but only selective testing in those with sporadic disease

    Rare variants in tenascin genes in a cohort of children with primary vesicoureteric reflux

    Get PDF
    Primary vesicoureteral reflux (PVUR) is the most common malformation of the kidney and urinary tract and reflux nephropathy is a major cause of chronic kidney disease in children. Recently, we reported mutations in tenascin XB (TNXB) as a cause of PVUR with joint hypermobility

    Polycation-Ï€ Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
    • …
    corecore