291 research outputs found

    Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians

    Get PDF
    Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells) caused by interstitial fluid flow. The numerical simulation results show the following: (i) the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii) when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii) interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv) capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments

    Purified dietary red and white meat proteins show beneficial effects on growth and metabolism of young rats compared to casein and soy protein

    Get PDF
    This study compared the effects of casein, soy protein (SP), red (RMP) and white meat (WMP) proteins on growth and metabolism of young rats. Compared to casein, the ratio of daily feed intake to daily body weight gain of rats was not changed by meat protein but reduced by SP by 93.3% (P<0.05). Feeding RMP and WMP reduced the liver total cholesterol (TC) contents by 24.3% and 17.8% respectively (P<0.05). Only RMP increased plasma HDL-cholesterol concentrations (by 12.7%, P<0.05), whereas SP increased plasma triacylglycerol, TC and LDL-cholesterol concentrations by 23.7%, 19.5% and 61.5% respectively (P<0.05). Plasma essential and total amino acid concentrations were increased by WMP (by 18.8% and 12.4%, P<0.05) but reduced by SP (by 28.3 and 37.7%, P<0.05). Twenty five liver proteins were differentially expressed in response to different protein sources. Therefore, meat proteins were beneficial for growth and metabolism of young rats compared to casein and SP

    Interplay between residual protease activity in commercial lactases and the subsequent digestibility of β-casein in a model system

    Get PDF
    One of the conventional ways to produce lactose-hydrolyzed (LH) milk is via the addition of commercial lactases into heat-treated milk in which lactose is hydrolyzed throughout storage. This post-hydrolysis method can induce proteolysis in milk proteins due to protease impurities remaining in commercial lactase preparations. In this work, the interplay between lactose hydrolysis, proteolysis, and glycation was studied in a model system of purified β-casein (β-CN), lactose, and lactases using peptidomic methods. With a lactase presence, the proteolysis of β-CN was found to be increased during storage. The protease side-activities mainly acted on the hydrophobic C-terminus of β-CN at Ala, Pro, Ile, Phe, Leu, Lys, Gln, and Tyr positions, resulting in the formation of peptides, some of which were N-terminal glycated or potentially bitter. The proteolysis in β-CN incubated with a lactase was shown to act as a kind of “pre-digestion”, thus increasing the subsequent in vitro digestibility of β-CN and drastically changing the peptide profiles of the in vitro digests. This model study provides a better understanding of how the residual proteases in commercial lactase preparations affect the quality and nutritional aspects of β-CN itself and could be related to its behavior in LH milk

    Molecular Cloning and Expression Analysis of the Endogenous Cellulase Gene MaCel1 in Monochamus alternatus

    Get PDF
    The purpose of this study was to characterize the endogenous cellulase gene MaCel1 of Monochamus alternatus, which is an important vector of Bursaphelenchus xylophilus, a pine wood nematode, which causes pine wilt disease (PWD). In this study, MaCel1 was cloned by rapid amplification of cDNA end (RACE), and its expression analyzed by RT-qPCR (real-time quantitative PCR detecting). A total of 1778 bp of cDNA was obtained. The encoding region of this gene was 1509 bp in length, encoding a protein containing 502 amino acids with a molecular weight of 58.66 kDa, and the isoelectric point of 5.46. Sequence similarity analysis showed that the amino acids sequence of MaCel1 had high similarity with the beta-Glucosinolate of Anoplophora glabripennis and slightly lower similarity with other insect cellulase genes (GH1). The beta-D-Glucosidase activity of MaCel1 was 256.02 +/- 43.14 U/L with no beta-Glucosinolate activity. MaCel1 gene was widely expressed in the intestine of M. alternatus. The expression level of MaCel1 gene in male (3.46) and female (3.51) adults was significantly higher than that in other developmental stages, and the lowest was in pupal stage (0.15). The results will help reveal the digestive mechanism of M. alternatus and lay the foundation for controlling PWD by controlling M. alternatus

    Gut Bacterial Communities of Lymantria xylina and Their Associations with Host Development and Diet

    Get PDF
    The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria

    Redox Regulation in Cancer Stem Cells

    Get PDF
    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment

    High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study

    Get PDF
    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus (P &lt; 0.05), but decreased the abundance of Lactobacillus (P &lt; 0.05). LC-MS-MS revealed a dynamic change of proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion

    feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers

    Get PDF
    Objective This study was conducted to investigate the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the energy metabolism in thigh muscle of embryos and neonatal broilers. Methods A total of 960 eggs were randomly assigned to three treatments: i) non-injected control group, ii) saline group injected with 0.6 mL of physiological saline (0.75%), and iii) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg on 17.5 d of incubation. After hatching, 120 male chicks (close to the average body weight of the pooled group) in each group were randomly assigned to eight replications. The feeding experiment lasted 7 days. Results The results showed that IOF of CrPyr increased glucose concentrations in the thigh muscle of broilers on 2 d after injection (p<0.05). Compared with the control and saline groups, the concentration of creatine in CrPyr group was increased on 2 d after injection and the day of hatch (p<0.05). Moreover, IOF of CrPyr increased the creatine kinase activity at hatch and increased the activities of hexokinase and pyruvate kinase on 2 d after injection and the day of hatch (p<0.05). Chicks in CrPyr group showed higher mRNA expressions of glucose transporter 3 (GLUT3) and GLUT8 on the day of hatch (p<0.05). Conclusion These results demonstrated that IOF of CrPyr was beneficial to enhance muscle energy reserves of embryos and hatchlings

    Effect of Different Tumbling Marination Treatments on the Quality Characteristics of Prepared Pork Chops

    Get PDF
    The effect of different tumbling marination treatments (control group, CG; conventional static marination, SM; vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) on the quality characteristics of prepared pork chops was investigated under simulated commercial conditions. The CT treatment increased (p<0.05) the pH value, b* value, product yield, tenderness, overall flavor, sensory juiciness and overall acceptability in comparison to other treatments for prepared boneless pork chops. The CT treatment decreased (p<0.05) cooking loss, shear force value, hardness, gumminess and chewiness compared with other treatments. In addition, CT treatment effectively improved springiness and sensory color more than other treatments. However, IT treatment achieved the numerically highest (p<0.05) L* and a* values. These results suggested that CT treatment obtained the best quality characteristics of prepared pork chops and should be adopted as the optimal commercial processing method for this prepared boneless pork chops

    Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

    Get PDF
    The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) and effective tumbling time (4, 6, 8, and 10 h) on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD) and significantly increased the total moisture content, product yield, salt soluble proteins (SSP) solubility, immobilized water component (p<0.05) compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05), whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05). These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops
    corecore