1,893 research outputs found
A STUDY ON THE ISSUE OF INNOVATIVE INDUSTRIAL CONSTRUCTION AND INNOVATIVE INDUSTRIAL CLUSTER IN BUILDING AN INNOVATIVE NINGXIA
To construct an Innovative Ningxia and develop its economy by leaps and bounds, This paper puts forward the necessity and urgency of adjusting and optimizing the industrial structure in Ningxia, it analyses the conclusion and enlightenment of theoretical research on the industrial cluster and the experience and enlightenment of the development of innovative industrial cluster at home and abroad, it pointes the tendency and the barriers to the industrial cluster in Ningxia, it advances the goal, direction and measures of innovative clusters development and construction in Ningxia. Key words: industrial structure, industrial cluster, innovative industrial construction, innovative industrial cluster, innovative Ningxi
Non-ergodic Convergence Analysis of Heavy-Ball Algorithms
In this paper, we revisit the convergence of the Heavy-ball method, and
present improved convergence complexity results in the convex setting. We
provide the first non-ergodic O(1/k) rate result of the Heavy-ball algorithm
with constant step size for coercive objective functions. For objective
functions satisfying a relaxed strongly convex condition, the linear
convergence is established under weaker assumptions on the step size and
inertial parameter than made in the existing literature. We extend our results
to multi-block version of the algorithm with both the cyclic and stochastic
update rules. In addition, our results can also be extended to decentralized
optimization, where the ergodic analysis is not applicable
System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns
A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration
System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns
A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration
Observation of Majorana fermions with spin selective Andreev reflection in the vortex of topological superconductor
Majorana fermion (MF) whose antiparticle is itself has been predicted in
condensed matter systems. Signatures of the MFs have been reported as zero
energy modes in various systems. More definitive evidences are highly desired
to verify the existence of the MF. Very recently, theory has predicted MFs to
induce spin selective Andreev reflection (SSAR), a novel magnetic property
which can be used to detect the MFs. Here we report the first observation of
the SSAR from MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which
topological superconductivity was previously established. By using
spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we show
that the zero-bias peak of the tunneling differential conductance at the vortex
center is substantially higher when the tip polarization and the external
magnetic field are parallel than anti-parallel to each other. Such strong spin
dependence of the tunneling is absent away from the vortex center, or in a
conventional superconductor. The observed spin dependent tunneling effect is a
direct evidence for the SSAR from MFs, fully consistent with theoretical
analyses. Our work provides definitive evidences of MFs and will stimulate the
MFs research on their novel physical properties, hence a step towards their
statistics and application in quantum computing.Comment: 4 figures 15 page
Poultry Drinking Water Used for Avian Influenza Surveillance
Samples of drinking water from poultry cages, which can be collected conveniently and noninvasively, provide higher rates of influenza (H9N2) virus isolation than do samples of fecal droppings. Studies to confirm the usefulness of poultry drinking water for detecting influenza (H5N1) should be conducted in disease-endemic areas
- …