67 research outputs found

    Characterization of Corrosion Behavior of TA2 Titanium Alloy Welded Joints in Seawater Environment

    Get PDF
    Titanium alloy has been widely used in Marine pipeline system because of its excellent corrosion resistance. However, there are differences in microstructure and electrochemical properties because of the heterogeneous structure of the welded joint, the corrosion behavior is often different. In this paper, the corrosion behavior of TA2 titanium alloy welded joint in seawater at different temperatures was studied by traditional macro electrochemical test analysis combined with microelectrode array test and surface morphology analysis. Conventional macroscopic electrochemical analysis results show that the corrosion resistance of heat-affected zone is always the best, followed by the base metal and the weld. And the higher the temperature, the easier the formation of passivation film. The results of microelectrode array test show that the heat-affected zone is always the cathode region of the whole welded joint, and part of the cathode near the base metal region has the largest current density, which acts as the main cathode to slow down corrosion. At slightly higher temperatures, the polarity deflection will occur in the base metal zone and weld zone due to the different formation speeds of passivation film in early corrosion stage. With the prolongation of corrosion time, the base metal eventually becomes the cathode zone and the weld zone eventually becomes the anode zone

    Quantum dot passivation of halide perovskite films with reduced defects, suppressed phase segregation, and enhanced stability

    Get PDF
    Structural defects are ubiquitous for polycrystalline perovskite films, compromising device performance and stability. Herein, a universal method is developed to overcome this issue by incorporating halide perovskite quantum dots (QDs) into perovskite polycrystalline films. CsPbBr3 QDs are deposited on four types of halide perovskite films (CsPbBr3, CsPbIBr2, CsPbBrI2, and MAPbI3) and the interactions are triggered by annealing. The ions in the CsPbBr3 QDs are released into the thin films to passivate defects, and concurrently the hydrophobic ligands of QDs self-assemble on the film surfaces and grain boundaries to reduce the defect density and enhance the film stability. For all QD-treated films, PL emission intensity and carrier lifetime are significantly improved, and surface morphology and composition uniformity are also optimized. Furthermore, after the QD treatment, light-induced phase segregation and degradation in mixed-halide perovskite films are suppressed, and the efficiency of mixed-halide CsPbIBr2 solar cells is remarkably improved to over 11% from 8.7%. Overall, this work provides a general approach to achieving high-quality halide perovskite films with suppressed phase segregation, reduced defects, and enhanced stability for optoelectronic applications.Peer ReviewedPostprint (author's final draft

    Spin-Orbital Coupling in All-Inorganic Metal-Halide Perovskites: the Hidden Force that Matters

    Full text link
    Highlighted with improved long-term thermal and environmental stability, all-inorganic metal halide perovskites exhibit tunable physical properties, cost-effective synthesis, and satisfactory optoelectronic performance, attracting increasing research interests worldwide. However, a less explored feature of these materials is their strong spin-orbit coupling (SOC), which is the hidden force influencing not only band structure but also properties including magnetoresistance, spin lifetime and singlet-triplet splitting. This review provides an overview of the fundamental aspects and the latest progress of the SOC and debate regarding Rashba effects in all-inorganic metal halide perovskites, providing critical insights into the physical phenomena and potential applications. Meanwhile, crystal structures and photophysics of all-inorganic perovskite are discussed in the context of SOC, along with the related experimental and characterization techniques. Furthermore, a recent understanding of the band topology in the all-inorganic halide perovskites is introduced to push the boundary even further for the novel applications of all-inorganic halide perovskites. Finally, an outlook is given on the potential directions of breakthroughs via leveraging the SOC in halide perovskites.Comment: 44 pages, 5 figure

    Genomic analyses provide insights into peach local adaptation and responses to climate change

    Get PDF
    The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.info:eu-repo/semantics/publishedVersio

    Perovskite quantum dot solar cells fabricated from recycled lead-acid battery waste

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Materials Letters, copyright © 2021 American Chemical Societ, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsmaterialslett.1c00592.A cost-effective and environmentally friendly Pb source is a prerequisite for achieving large-scale, low-cost perovskite photovoltaic devices. Currently, the commonly used method to prepare the lead source is based on a fire smelting process, requiring a high temperature of more than 1000 °C, which results in environmental pollution. Spent car lead acid batteries are an environmentally hazardous waste; however, they can alternatively serve as an abundant and inexpensive Pb source. Due to “self-purification”, quantum dots feature a high tolerance of impurities in the precursor since the impurities tend to be expelled from the small crystalline cores during colloidal nucleation. Herein, PbI2 recycled from spent lead acid batteries via a facile low-temperature solution process is used to synthesize CsPbI3 quantum dots, which simultaneously brings multiple benefits including (1) avoiding pollution originating from the fire smelting process; (2) recycling the Pb waste from batteries; and (3) synthesizing high-quality quantum dots. The resulting CsPbI3 quantum dots have photophysical properties such as PLQY and carrier lifetimes on par with those synthesized from the commercial PbI2 due to expelling of the impurity Na atoms. The resulting solar cells deliver comparable power conversion efficiencies: 14.0% for the cells fabricated using recycled PbI2 and 14.7% for the cells constructed using commercial PbI2. This work paves a new and feasible path to applying recycled Pb sources in perovskite photovoltaics.Peer ReviewedPostprint (author's final draft

    Anomalous structural evolution and glassy lattice in mixed-halide hybrid perovskites

    Get PDF
    Hybrid halide perovskites have emerged as highly promising photovoltaic materials because of their exceptional optoelectronic properties, which are often optimized via compositional engineering like mixing halides. It is well established that hybrid perovskites undergo a series of structural phase transitions as temperature varies. In this work, the authors find that phase transitions are substantially suppressed in mixed-halide hybrid perovskite single crystals of MAPbI3-xBrx (MA = CH3NH3+ and x = 1 or 2) using a complementary suite of diffraction and spectroscopic techniques. Furthermore, as a general behavior, multiple crystallographic phases coexist in mixed-halide perovskites over a wide temperature range, and a slightly distorted monoclinic phase, hitherto unreported for hybrid perovskites, is dominant at temperatures above 100 K. The anomalous structural evolution is correlated with the glassy behavior of organic cations and optical phonons in mixed-halide perovskites. This work demonstrates the complex interplay between composition engineering and lattice dynamics in hybrid perovskites, shedding new light on their unique properties.Peer ReviewedPostprint (published version

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Development of Metal Halide Perovskites for Memristor Applications

    No full text
    In the last decades, resistive switching (RS) has burgeoned as a promising option for next-generation non-volatile memory applications. RS devices generally have a two-terminal metal-insulator-metal structure, where a variety of novel materials have been employed as the insulator layer. Among them, halide perovskites have drawn extensive attention owing to their superb physical and electronic properties, including ambipolar carries transport, low defect density, tunable bandgap, long diffusion length, and so on. In this thesis, halide perovskites-based RS devices have been developed, and their electrical properties are tuned by engineering the intrinsic defects and interfaces. The thesis includes the following two parts: (1) The first ion-redistribution-induced interface-type memory based on hybrid perovskite is developed and fabricated. Owing to the movable vacancies in the perovskite film, we can reliably modulate the height of the Schottky barrier at the MAPbBr3/ITO interface, leading to an interface-type RS memory with better stability compared to filament counterpart. (2) Conventional photodetectors are only able to record a temporary optical signal but require additional memory devices to further store the output. In our work, an artificial iconic memory device is fabricated with a multiplayer structure of ITO/MAPbBr3/Au/MAPbBr3/Ag, composed of the series-connected photodetector and RS devices. The incident light can modulate the voltage distribution, and then the information is stored as the states of the RS memory. Overall, this thesis presents facile and cost-efficient methods to fabricate halide perovskites devices for potential RS applications. The systematic study on the modification of RS behavior of halide perovskites devices might give a better understanding of the RS mechanisms and provide routes to enhancing the device performance

    Preparation and characterization of magnetic poly(styrene-glycidyl methacrylate) microspheres for highly efficient protein adsorption by two-stage dispersion polymerization

    No full text
    Micrometer-sized superparamagnetic poly(styrene-glycidyl methacrylate)/Fe3O4 spheres were synthesized by two-stage dispersion polymerization with modified hydrophobic Fe3O4 nanoparticles, styrene (St), and glycidyl methacrylate (GMA). The morphology and properties of the magnetic Fe3O4-P (St-GMA) microspheres were examined by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, thermogravimetric analysis, and attenuated total reflectance. The average size of the obtained magnetic microspheres was 1.50 mu m in diameter with a narrow size distribution, and the saturation magnetization of the magnetic microspheres was 8.23 emu/g. The magnetic Fe3O4-P (St-GMA) microspheres with immobilized iminodiacetic acid-Cu2+ groups were used to investigate the adsorption capacity and selectivity of the model proteins, bovine hemoglobin (BHb) and bovine serum albumin (BSA). We found that the adsorption capacity of BHb was as high as 190.66 mg/g of microspheres, which was 3.20 times greater than that of BSA, which was only 59.64 mg/g of microspheres as determined by high-performance liquid chromatography. With a rather low nonspecific adsorption, these microspheres have great potential for protein separation and purification applications. (C) 2015 Wiley Periodicals, Inc
    corecore