8,722 research outputs found

    Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films

    Get PDF
    Silk fibroin (SF) is a protein polymer derived from insects, which has unique mechanical properties and tunable biodegradation rate due to its variable structures. Here, the variability of structural, thermal, and mechanical properties of two domesticated silk films (Chinese and Thailand B. Mori) regenerated from formic acid solution, as well as their original fibers, were compared and investigated using dynamic mechanical analysis (DMA) and Fourier transform infrared spectrometry (FTIR). Four relaxation events appeared clearly during the temperature region of 25 Ā°C to 280 Ā°C in DMA curves, and their disorder degree (fdis) and glass transition temperature (Tg) were predicted using Group Interaction Modeling (GIM). Compared with Thai (Thailand) regenerated silks, Chin (Chinese) silks possess a lower Tg, higher fdis, and better elasticity and mechanical strength. As the calcium chloride content in the initial processing solvent increases (1%ā€“6%), the Tg of the final SF samples gradually decrease, while their fdis increase. Besides, SF with more non-crystalline structures shows high plasticity. Two Ī±- relaxations in the glass transition region of tan Ī“ curve were identified due to the structural transition of silk protein. These findings provide a new perspective for the design of advanced protein biomaterials with different secondary structures, and facilitate a comprehensive understanding of the structure-property relationship of various biopolymers in the futu

    Multifunctional silk fibroin ā€“ Poly(L-lactic acid) porous nanofibers: Designing adjustable nanopores to control composite properties and biological responses

    Get PDF
    Nano-scale renewable porous materials have a wide range of applications in the biomedical field such as tissue engineering and biosensors due to their high biocompatibility and large surface area. In this study, a composite of silk fibroin and poly(L-lactic acid) was electrospun together to form a porous nanofiber biomaterial with 11 blending ratios to tune the porosity of the single fibers (19.3ā€“49%). This is highly advantageous as porous fibers effectively promoted cell attachment and proliferation while also manipulating cell growth. The protein-polymer molecular interactions, structures and crystal contents, as well as the melting and glass transition behaviors of the composites were determined. Results reveal that varying silk fibroin content can directly tune the nanopore structure of each individual fiber. The composite nanofibers have a much higher thermal stability when compared to the pure silk or PLA nanofibers. Besides, as the SF concentration increased from 0% to 100%, the hydrophilicity of the electrospun composite fibers increased (contact angle decreased from 135Ā° to 103Ā°), and the enzymatic degradation residues also increased from 20% to 95%. This study provides a unique method for tuning nano-fabrication properties of electrospun protein-polymer fibers that can be widely useful in the fields of biomedicine and sustainable materials

    Research on the Mechanism of Entrepreneurship Education on College Studentsā€™ Entrepreneurial Willingness and Its Future Prediction

    Get PDF
    The strength of college studentsā€™ entrepreneurial willingness is a barometer for measuring the effectiveness of entrepreneurship education. It is also an important avenue for college students to expand their employment opportunities and enhance the quality of their employment in the face of new employment trends. Comprehensive universities offer a wide range of disciplines and great professional specialization. It is of great significance to explore the diversity results in college studentsā€™ entrepreneurship education indicators. According to the data on the relationship between entrepreneurial education and entrepreneurship willingness in comprehensive universities in Jiangsu province, various factors such as subject characteristics, work experience, educational background, and family environment significantly impact college studentsā€™ willingness to become entrepreneurs. The implementation of entrepreneurship education, including the awakening of entrepreneurial consciousness, the cultivation of entrepreneurial abilities, and the improvement of entrepreneurial willingness, has a direct impact on college studentsā€™ willingness to start their own businesses

    Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications.

    Get PDF
    Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers\u27 morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors\u27 interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials

    High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure

    Get PDF
    YesHighly-oriented poly (lactic acid) (PLA) with bionic micro-grooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA. In order to enhance the melt strength and thus obtain high orientation degree, long chain branched PLA (LCB-PLA) was prepared at first through a two-step ring-opening reaction during processing. Linear viscoelasticity combined with branch-on-branch (BOB) model was used to predict probable compositions and chain topologies of the products, and it was found that the molecular weight of PLA increased and topological structures with star like chain with three arms and tree-like chain with two generations formed during reactive processing, and consequently draw ratio as high as1200% can be achieved during the subsequent hot stretching. With the increase of draw ratio, the tensile strength and orientation degree of PLA increased dramatically. Long chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing platelet activation. Micro-grooves can be observed on the surface of the oriented PLA which were similar to the intimal layer of blood vessel, and such bionic structure resulted from the formation of the oriented shish kebab-like crystals along the draw direction

    A novel multi-objective evolutionary algorithm based on space partitioning

    Get PDF
    To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks

    Enchanced levels of apolipoprotein M during HBV infection feedback suppresses HBV replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic liver diseases can interfere with hepatic metabolism of lipoproteins, apolipoproteins. Hepatitis B virus (HBV) is a major etiological agent causing acute and chronic liver diseases. Apolipoprotein M (ApoM) is a high-density lipoprotein (HDL) apolipoprotein and exclusively expressed in the liver parenchyma cells and in the tubular cells of the kidney. This study was to determine the correlation between HBV infection and ApoM expression.</p> <p>Materials and methods</p> <p>Serum ApoM levels in patients with HBV infection and in healthy individuals were measured by ELISA, ApoM mRNA expression were determined by RT-PCR, and the expression of S and E proteins of HBV, as well as the synthesis of viral DNA were measured by ELISA and real-time PCR.</p> <p>Results</p> <p>The levels of serum ApoM was significantly elevated in patients as compared to healthy individuals (<it>P </it>< 0.001), ApoM promoter activity, mRNA and protein expression were all stimulated in cells transfected with infectious HBV clone. In addition, ApoM decreases the expression of S and E proteins of HBV and the synthesis of viral DNA.</p> <p>Conclusion</p> <p>Raised ApoM levels in HBV infection may in turn suppress HBV replication, one of the protective mechanisms of nature.</p
    • ā€¦
    corecore