7 research outputs found

    Galoisove reprezentacije pridružene eliptičkim krivuljama

    Get PDF
    U prvom poglavlju definirali smo pojam endomorfizma na eliptičkoj krivulji CC i dokazali osnovna svojstva. Uveli smo pojam izogenije te pokazali kako se svojstva endomorfizama lako proširuju na izogenije. Spomenuli smo Frobeniusov endomorfizam i dali nekoliko primjera izogenija. U drugom poglavlju definirali smo pojam visine te iskazali neka njezina bitna svojstva. Iskazali smo teorem spusta te iskazali Mordellov teorem. U trećem poglavlju razvili smo osnove teorije djelidbenih polinoma te pokazali da je C[n]Z/nZZ/nZC[n] \simeq \mathbb{Z}/n \mathbb{Z} \bigoplus \mathbb{Z}/n \mathbb{Z}. Četvrto poglavlje je glavni dio ovog rada. Definirali smo djelovanje elemenata Galoisove grupe Gal(K/Q)Gal(K/\mathbb{Q}) na točke iz CC te pokazali osnovne rezultate koji slijede iz djelovanja. Pokazali smo da su koordinate točaka konačnog reda algebarske nad Q\mathbb{Q} te da je proširenje od Q\mathbb{Q} inducirano xx i yy koordinatama točaka nekog fiksnog reda nn Galoisovo. Definirali smo mod nn Galoisovu reprezentaciju pridruženu krivulji CC i pokazali da je to preslikavanje monomorfizam. Definirali smo Borelovu i Cartanovu podgrupu od GL(Fp)GL(\mathbb{F}_p) i pokazali osnovna svojstva. Odredili smo u kojim se maksimalnim podgrupama od GL(Fp)GL(\mathbb{F}_p) može nalaziti slika nesurjektivne mod pp Galoisove reprezentacije. Definirali smo Weilovo sparivanje i pokazali u teoremu 4.15. kakva svojstva mora imati slika mod pp Galoisove reprezentacije.In the first chapter we defined endomorphisms of the elliptic curve CC and proved their basic properties. We introduced isogenies and showed how properties of endomorphisms hold for isogenies. We mentioned the Frobenius endomorphism and give a few examples of isogenies. In the second chapter we defined the height function and showed some important properties. We also introduced the Descent theorem and stated Mordell's theorem. In the third chapter we developed basic division polynomials theory and we showed that C[n]Z/nZZ/nZC[n] \simeq \mathbb{Z}/n \mathbb{Z} \bigoplus \mathbb{Z}/n \mathbb{Z}. The fourth chapter is the main part of this work. We defined the action of the Galois group Gal(K/Q)Gal(K/\mathbb{Q}) on points on CC and showed basic properties. We showed that coordinates of points of finite order are algebraic over Q\mathbb{Q} and that the field extension induced by the xx and yy coordinates of points that are of finite order nn is Galois. We defined the mod nn Galois representation attached to the curve CC and showed that it is a monomorphism. We defined the Borel and Cartan subgroup of GL(Fp)GL(\mathbb{F}_p) and showed some basic properties. We determined in which maximal subgroups of GL(Fp)GL(\mathbb{F}_p) can the image of non-surjective mod pp Galois representation be. We defined the Weil pairing and showed in theorem 4.15 some properties of mod pp Galois representation

    Galoisove reprezentacije pridružene eliptičkim krivuljama

    Get PDF
    U prvom poglavlju definirali smo pojam endomorfizma na eliptičkoj krivulji CC i dokazali osnovna svojstva. Uveli smo pojam izogenije te pokazali kako se svojstva endomorfizama lako proširuju na izogenije. Spomenuli smo Frobeniusov endomorfizam i dali nekoliko primjera izogenija. U drugom poglavlju definirali smo pojam visine te iskazali neka njezina bitna svojstva. Iskazali smo teorem spusta te iskazali Mordellov teorem. U trećem poglavlju razvili smo osnove teorije djelidbenih polinoma te pokazali da je C[n]Z/nZZ/nZC[n] \simeq \mathbb{Z}/n \mathbb{Z} \bigoplus \mathbb{Z}/n \mathbb{Z}. Četvrto poglavlje je glavni dio ovog rada. Definirali smo djelovanje elemenata Galoisove grupe Gal(K/Q)Gal(K/\mathbb{Q}) na točke iz CC te pokazali osnovne rezultate koji slijede iz djelovanja. Pokazali smo da su koordinate točaka konačnog reda algebarske nad Q\mathbb{Q} te da je proširenje od Q\mathbb{Q} inducirano xx i yy koordinatama točaka nekog fiksnog reda nn Galoisovo. Definirali smo mod nn Galoisovu reprezentaciju pridruženu krivulji CC i pokazali da je to preslikavanje monomorfizam. Definirali smo Borelovu i Cartanovu podgrupu od GL(Fp)GL(\mathbb{F}_p) i pokazali osnovna svojstva. Odredili smo u kojim se maksimalnim podgrupama od GL(Fp)GL(\mathbb{F}_p) može nalaziti slika nesurjektivne mod pp Galoisove reprezentacije. Definirali smo Weilovo sparivanje i pokazali u teoremu 4.15. kakva svojstva mora imati slika mod pp Galoisove reprezentacije.In the first chapter we defined endomorphisms of the elliptic curve CC and proved their basic properties. We introduced isogenies and showed how properties of endomorphisms hold for isogenies. We mentioned the Frobenius endomorphism and give a few examples of isogenies. In the second chapter we defined the height function and showed some important properties. We also introduced the Descent theorem and stated Mordell's theorem. In the third chapter we developed basic division polynomials theory and we showed that C[n]Z/nZZ/nZC[n] \simeq \mathbb{Z}/n \mathbb{Z} \bigoplus \mathbb{Z}/n \mathbb{Z}. The fourth chapter is the main part of this work. We defined the action of the Galois group Gal(K/Q)Gal(K/\mathbb{Q}) on points on CC and showed basic properties. We showed that coordinates of points of finite order are algebraic over Q\mathbb{Q} and that the field extension induced by the xx and yy coordinates of points that are of finite order nn is Galois. We defined the mod nn Galois representation attached to the curve CC and showed that it is a monomorphism. We defined the Borel and Cartan subgroup of GL(Fp)GL(\mathbb{F}_p) and showed some basic properties. We determined in which maximal subgroups of GL(Fp)GL(\mathbb{F}_p) can the image of non-surjective mod pp Galois representation be. We defined the Weil pairing and showed in theorem 4.15 some properties of mod pp Galois representation

    Torzija eliptičkih krivulja s racionalnom j-invarijantom nad poljima algebarskih brojeva

    No full text
    In this thesis we will classify the possible torsion structures of elliptic curves with rational jj-invariant defined over number fields. We start with elliptic curves defined over Q\mathbb{Q}. Let KK be a sextic number field. We determine all the possibilities GG for E(K)torsE(K)_{tors} and we prove that for each such possible group GG, with the exception of the group C3C18C_3 \bigoplus C_{18}, that there exist an elliptic curve E/QE / \mathbb{Q} and a sextic number field KK such that E(K)torsGE(K)_{tors} \cong G. Additionally, we provide a partial result regarding the group C3C18C_3 \bigoplus C_{18}. For a positive integer dd, define Φ(d)\Phi(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over KK. For a positive integer dd, define ΦQ(d)\Phi_{\mathbb{Q}}(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over Q\mathbb{Q}. Define ΦjQ(d)\Phi_{j \in \mathbb{Q}}(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over KK with j(E)Qj(E) \in \mathbb{Q}. With the help of the previously mentioned result, we are able to completely determine the sets ΦjQ(p)\Phi_{j \in \mathbb{Q}}(p), where pp is a prime number. More precisely, our result is the following. Let KK be a number field such that [K:Q]=p[K : Q] = p and E/KE / K an elliptic curve with rational jj-invariant. The following holds: 1. If p7p \geq 7, then E(K)torsΦ(1)E(K)_{tors} \in \Phi(1). 2. If p=3p = 3 or p=5p = 5, then E(K)torsΦQ(p)E(K)_{tors} \in \Phi_{\mathbb{Q}}(p). 3. If p=2p = 2, then E(K)torsΦQ(2)E(K)_{tors} \in \Phi_{\mathbb{Q}}(2) or E(K)torsZ/13ZE(K)_{tors} \cong \mathbb{Z}/13\mathbb{Z}. In the sixth chapter, we are able to determine all the sets ΦQ(pq)\Phi_{\mathbb{Q}}(pq), where pp and qq are prime numbers. Most of these cases follow easily from previously known results and the results in the first two chapters of this thesis. In most cases we have ΦQ(pq)=ΦQ(p)ΦQ(q)\Phi_{\mathbb{Q}}(pq) = \Phi_{\mathbb{Q}}(p) \cup \Phi_{\mathbb{Q}}(q). A detailed description of the sets ΦQ(pq)\Phi_{\mathbb{Q}}(pq) can be found in the fifth chapter of this thesis. Some of the proofs in the thesis rely on extensive computations in Magma [3]. All of the programs and calculations used for the proofs can be found in the last chapter.U ovoj disertaciji odredit ćemo moguće torzijske strukture eliptičkih krivulja s racionalnom jj-invarijantom definiranih nad nekim poljem algebarskih brojeva. Prvo ćemo promatrati eliptičke krivulje definirane nad Q\mathbb{Q}. Neka je KK sekstično polje. Odredit ćemo sve mogućnosti GG za E(K)torsE(K)_{tors} i dokazati da za svaku moguću grupu GG osim C3C18C_3 \bigoplus C_{18} postoji eliptička krivulja E/QE / \mathbb{Q} i sekstično polje KK takvo da je E(K)torsGE(K)_{tors} \cong G. Nadalje, dokazat ćemo parcijalni rezultat za grupu C3C18C_3 \bigoplus C_{18}. Za prirodan broj dd definiramo Φ(d)\Phi(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad KK. Za prirodan broj dd definiramo ΦQ(d)\Phi_{\mathbb{Q}}(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad Q\mathbb{Q}. Za prirodan broj dd definiramo ΦjQ(d)\Phi_{j \in \mathbb{Q}}(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad KK, te j(E)Qj(E) \in \mathbb{Q}. Uz pomoć prethodnog rezultata u mogućnosti smo u potpunosti odrediti skupove ΦjQ(p)\Phi_{j \in \mathbb{Q}}(p), gdje je pp prost broj. Preciznije, naši rezultati su sljedeći. Neka je KK polje algebarskih brojeva takvo da je [K:Q]=p[K : Q] = p i E/KE / K eliptička krivulja s racionalnom jj invarijantom. Tada 1. Ako je p7p \geq 7, tada E(K)torsΦ(1)E(K)_{tors} \in \Phi(1). 2. Ako je p=3p = 3 ili p=5p = 5, tada E(K)torsΦQ(p)E(K)_{tors} \in \Phi_{\mathbb{Q}}(p). 3. Ako je p=2p = 2, tada E(K)torsΦQ(2)E(K)_{tors} \in \Phi_{\mathbb{Q}}(2) ili E(K)torsZ/13ZE(K)_{tors} \cong \mathbb{Z}/13\mathbb{Z}. U šestom poglavlju odredit ćemo sve skupove ΦQ(pq)\Phi_{\mathbb{Q}}(pq), gdje su pp i qq prosti brojevi. Mnoge takve skupove ćemo odrediti koristeći već poznate rezultate, te rezultate dokazane u drugom i trećem poglavlju. U većini slučajeva vrijedit će ΦQ(pq)=ΦQ(p)ΦQ(q)\Phi_{\mathbb{Q}}(pq) = \Phi_{\mathbb{Q}}(p) \cup \Phi_{\mathbb{Q}}(q). Detaljniji opis skupova ΦQ(pq)\Phi_{\mathbb{Q}}(pq) može se pronaći u petom poglavlju. Dokazi nekih rezultata u ovoj disertaciji temelje se na računanju u Magmi [3]. Svi programi i izračuni korišteni u dokazima mogu se pronaći u posljednjem poglavlju

    Torzija eliptičkih krivulja s racionalnom j-invarijantom nad poljima algebarskih brojeva

    No full text
    In this thesis we will classify the possible torsion structures of elliptic curves with rational jj-invariant defined over number fields. We start with elliptic curves defined over Q\mathbb{Q}. Let KK be a sextic number field. We determine all the possibilities GG for E(K)torsE(K)_{tors} and we prove that for each such possible group GG, with the exception of the group C3C18C_3 \bigoplus C_{18}, that there exist an elliptic curve E/QE / \mathbb{Q} and a sextic number field KK such that E(K)torsGE(K)_{tors} \cong G. Additionally, we provide a partial result regarding the group C3C18C_3 \bigoplus C_{18}. For a positive integer dd, define Φ(d)\Phi(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over KK. For a positive integer dd, define ΦQ(d)\Phi_{\mathbb{Q}}(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over Q\mathbb{Q}. Define ΦjQ(d)\Phi_{j \in \mathbb{Q}}(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over KK with j(E)Qj(E) \in \mathbb{Q}. With the help of the previously mentioned result, we are able to completely determine the sets ΦjQ(p)\Phi_{j \in \mathbb{Q}}(p), where pp is a prime number. More precisely, our result is the following. Let KK be a number field such that [K:Q]=p[K : Q] = p and E/KE / K an elliptic curve with rational jj-invariant. The following holds: 1. If p7p \geq 7, then E(K)torsΦ(1)E(K)_{tors} \in \Phi(1). 2. If p=3p = 3 or p=5p = 5, then E(K)torsΦQ(p)E(K)_{tors} \in \Phi_{\mathbb{Q}}(p). 3. If p=2p = 2, then E(K)torsΦQ(2)E(K)_{tors} \in \Phi_{\mathbb{Q}}(2) or E(K)torsZ/13ZE(K)_{tors} \cong \mathbb{Z}/13\mathbb{Z}. In the sixth chapter, we are able to determine all the sets ΦQ(pq)\Phi_{\mathbb{Q}}(pq), where pp and qq are prime numbers. Most of these cases follow easily from previously known results and the results in the first two chapters of this thesis. In most cases we have ΦQ(pq)=ΦQ(p)ΦQ(q)\Phi_{\mathbb{Q}}(pq) = \Phi_{\mathbb{Q}}(p) \cup \Phi_{\mathbb{Q}}(q). A detailed description of the sets ΦQ(pq)\Phi_{\mathbb{Q}}(pq) can be found in the fifth chapter of this thesis. Some of the proofs in the thesis rely on extensive computations in Magma [3]. All of the programs and calculations used for the proofs can be found in the last chapter.U ovoj disertaciji odredit ćemo moguće torzijske strukture eliptičkih krivulja s racionalnom jj-invarijantom definiranih nad nekim poljem algebarskih brojeva. Prvo ćemo promatrati eliptičke krivulje definirane nad Q\mathbb{Q}. Neka je KK sekstično polje. Odredit ćemo sve mogućnosti GG za E(K)torsE(K)_{tors} i dokazati da za svaku moguću grupu GG osim C3C18C_3 \bigoplus C_{18} postoji eliptička krivulja E/QE / \mathbb{Q} i sekstično polje KK takvo da je E(K)torsGE(K)_{tors} \cong G. Nadalje, dokazat ćemo parcijalni rezultat za grupu C3C18C_3 \bigoplus C_{18}. Za prirodan broj dd definiramo Φ(d)\Phi(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad KK. Za prirodan broj dd definiramo ΦQ(d)\Phi_{\mathbb{Q}}(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad Q\mathbb{Q}. Za prirodan broj dd definiramo ΦjQ(d)\Phi_{j \in \mathbb{Q}}(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad KK, te j(E)Qj(E) \in \mathbb{Q}. Uz pomoć prethodnog rezultata u mogućnosti smo u potpunosti odrediti skupove ΦjQ(p)\Phi_{j \in \mathbb{Q}}(p), gdje je pp prost broj. Preciznije, naši rezultati su sljedeći. Neka je KK polje algebarskih brojeva takvo da je [K:Q]=p[K : Q] = p i E/KE / K eliptička krivulja s racionalnom jj invarijantom. Tada 1. Ako je p7p \geq 7, tada E(K)torsΦ(1)E(K)_{tors} \in \Phi(1). 2. Ako je p=3p = 3 ili p=5p = 5, tada E(K)torsΦQ(p)E(K)_{tors} \in \Phi_{\mathbb{Q}}(p). 3. Ako je p=2p = 2, tada E(K)torsΦQ(2)E(K)_{tors} \in \Phi_{\mathbb{Q}}(2) ili E(K)torsZ/13ZE(K)_{tors} \cong \mathbb{Z}/13\mathbb{Z}. U šestom poglavlju odredit ćemo sve skupove ΦQ(pq)\Phi_{\mathbb{Q}}(pq), gdje su pp i qq prosti brojevi. Mnoge takve skupove ćemo odrediti koristeći već poznate rezultate, te rezultate dokazane u drugom i trećem poglavlju. U većini slučajeva vrijedit će ΦQ(pq)=ΦQ(p)ΦQ(q)\Phi_{\mathbb{Q}}(pq) = \Phi_{\mathbb{Q}}(p) \cup \Phi_{\mathbb{Q}}(q). Detaljniji opis skupova ΦQ(pq)\Phi_{\mathbb{Q}}(pq) može se pronaći u petom poglavlju. Dokazi nekih rezultata u ovoj disertaciji temelje se na računanju u Magmi [3]. Svi programi i izračuni korišteni u dokazima mogu se pronaći u posljednjem poglavlju

    Torzija eliptičkih krivulja s racionalnom j-invarijantom nad poljima algebarskih brojeva

    No full text
    In this thesis we will classify the possible torsion structures of elliptic curves with rational jj-invariant defined over number fields. We start with elliptic curves defined over Q\mathbb{Q}. Let KK be a sextic number field. We determine all the possibilities GG for E(K)torsE(K)_{tors} and we prove that for each such possible group GG, with the exception of the group C3C18C_3 \bigoplus C_{18}, that there exist an elliptic curve E/QE / \mathbb{Q} and a sextic number field KK such that E(K)torsGE(K)_{tors} \cong G. Additionally, we provide a partial result regarding the group C3C18C_3 \bigoplus C_{18}. For a positive integer dd, define Φ(d)\Phi(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over KK. For a positive integer dd, define ΦQ(d)\Phi_{\mathbb{Q}}(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over Q\mathbb{Q}. Define ΦjQ(d)\Phi_{j \in \mathbb{Q}}(d) to be the set of possible isomorphism classes of groups E(K)torsE(K)_{tors}, where KK runs through all number fields KK of degree dd and EE runs through all elliptic curves over KK with j(E)Qj(E) \in \mathbb{Q}. With the help of the previously mentioned result, we are able to completely determine the sets ΦjQ(p)\Phi_{j \in \mathbb{Q}}(p), where pp is a prime number. More precisely, our result is the following. Let KK be a number field such that [K:Q]=p[K : Q] = p and E/KE / K an elliptic curve with rational jj-invariant. The following holds: 1. If p7p \geq 7, then E(K)torsΦ(1)E(K)_{tors} \in \Phi(1). 2. If p=3p = 3 or p=5p = 5, then E(K)torsΦQ(p)E(K)_{tors} \in \Phi_{\mathbb{Q}}(p). 3. If p=2p = 2, then E(K)torsΦQ(2)E(K)_{tors} \in \Phi_{\mathbb{Q}}(2) or E(K)torsZ/13ZE(K)_{tors} \cong \mathbb{Z}/13\mathbb{Z}. In the sixth chapter, we are able to determine all the sets ΦQ(pq)\Phi_{\mathbb{Q}}(pq), where pp and qq are prime numbers. Most of these cases follow easily from previously known results and the results in the first two chapters of this thesis. In most cases we have ΦQ(pq)=ΦQ(p)ΦQ(q)\Phi_{\mathbb{Q}}(pq) = \Phi_{\mathbb{Q}}(p) \cup \Phi_{\mathbb{Q}}(q). A detailed description of the sets ΦQ(pq)\Phi_{\mathbb{Q}}(pq) can be found in the fifth chapter of this thesis. Some of the proofs in the thesis rely on extensive computations in Magma [3]. All of the programs and calculations used for the proofs can be found in the last chapter.U ovoj disertaciji odredit ćemo moguće torzijske strukture eliptičkih krivulja s racionalnom jj-invarijantom definiranih nad nekim poljem algebarskih brojeva. Prvo ćemo promatrati eliptičke krivulje definirane nad Q\mathbb{Q}. Neka je KK sekstično polje. Odredit ćemo sve mogućnosti GG za E(K)torsE(K)_{tors} i dokazati da za svaku moguću grupu GG osim C3C18C_3 \bigoplus C_{18} postoji eliptička krivulja E/QE / \mathbb{Q} i sekstično polje KK takvo da je E(K)torsGE(K)_{tors} \cong G. Nadalje, dokazat ćemo parcijalni rezultat za grupu C3C18C_3 \bigoplus C_{18}. Za prirodan broj dd definiramo Φ(d)\Phi(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad KK. Za prirodan broj dd definiramo ΦQ(d)\Phi_{\mathbb{Q}}(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad Q\mathbb{Q}. Za prirodan broj dd definiramo ΦjQ(d)\Phi_{j \in \mathbb{Q}}(d) kao skup mogućih klasa izomorfizama grupa E(K)torsE(K)_{tors}, gdje KK varira po svim poljima algebarskih brojeva KK stupnja dd i EE varira po svim eliptičkim krivuljama nad KK, te j(E)Qj(E) \in \mathbb{Q}. Uz pomoć prethodnog rezultata u mogućnosti smo u potpunosti odrediti skupove ΦjQ(p)\Phi_{j \in \mathbb{Q}}(p), gdje je pp prost broj. Preciznije, naši rezultati su sljedeći. Neka je KK polje algebarskih brojeva takvo da je [K:Q]=p[K : Q] = p i E/KE / K eliptička krivulja s racionalnom jj invarijantom. Tada 1. Ako je p7p \geq 7, tada E(K)torsΦ(1)E(K)_{tors} \in \Phi(1). 2. Ako je p=3p = 3 ili p=5p = 5, tada E(K)torsΦQ(p)E(K)_{tors} \in \Phi_{\mathbb{Q}}(p). 3. Ako je p=2p = 2, tada E(K)torsΦQ(2)E(K)_{tors} \in \Phi_{\mathbb{Q}}(2) ili E(K)torsZ/13ZE(K)_{tors} \cong \mathbb{Z}/13\mathbb{Z}. U šestom poglavlju odredit ćemo sve skupove ΦQ(pq)\Phi_{\mathbb{Q}}(pq), gdje su pp i qq prosti brojevi. Mnoge takve skupove ćemo odrediti koristeći već poznate rezultate, te rezultate dokazane u drugom i trećem poglavlju. U većini slučajeva vrijedit će ΦQ(pq)=ΦQ(p)ΦQ(q)\Phi_{\mathbb{Q}}(pq) = \Phi_{\mathbb{Q}}(p) \cup \Phi_{\mathbb{Q}}(q). Detaljniji opis skupova ΦQ(pq)\Phi_{\mathbb{Q}}(pq) može se pronaći u petom poglavlju. Dokazi nekih rezultata u ovoj disertaciji temelje se na računanju u Magmi [3]. Svi programi i izračuni korišteni u dokazima mogu se pronaći u posljednjem poglavlju
    corecore