33,052 research outputs found

    Inner product computation for sparse iterative solvers on\ud distributed supercomputer

    Get PDF
    Recent years have witnessed that iterative Krylov methods without re-designing are not suitable for distribute supercomputers because of intensive global communications. It is well accepted that re-engineering Krylov methods for prescribed computer architecture is necessary and important to achieve higher performance and scalability. The paper focuses on simple and practical ways to re-organize Krylov methods and improve their performance for current heterogeneous distributed supercomputers. In construct with most of current software development of Krylov methods which usually focuses on efficient matrix vector multiplications, the paper focuses on the way to compute inner products on supercomputers and explains why inner product computation on current heterogeneous distributed supercomputers is crucial for scalable Krylov methods. Communication complexity analysis shows that how the inner product computation can be the bottleneck of performance of (inner) product-type iterative solvers on distributed supercomputers due to global communications. Principles of reducing such global communications are discussed. The importance of minimizing communications is demonstrated by experiments using up to 900 processors. The experiments were carried on a Dawning 5000A, one of the fastest and earliest heterogeneous supercomputers in the world. Both the analysis and experiments indicates that inner product computation is very likely to be the most challenging kernel for inner product-based iterative solvers to achieve exascale

    Minimizing synchronizations in sparse iterative solvers for distributed supercomputers

    Get PDF
    Eliminating synchronizations is one of the important techniques related to minimizing communications for modern high performance computing. This paper discusses principles of reducing communications due to global synchronizations in sparse iterative solvers on distributed supercomputers. We demonstrates how to minimizing global synchronizations by rescheduling a typical Krylov subspace method. The benefit of minimizing synchronizations is shown in theoretical analysis and is verified by numerical experiments using up to 900 processors. The experiments also show the communication complexity for some structured sparse matrix vector multiplications and global communications in the underlying supercomputers are in the order P1/2.5 and P4/5 respectively, where P is the number of processors and the experiments were carried on a Dawning 5000A

    Cosmological and Solar-System Tests of f(R) Modified Gravity

    Full text link
    We investigate the cosmological and the local tests of the f(R) theory of modified gravity via the observations of (1) the cosmic expansion and (2) the cosmic structures and via (3) the solar-system experiments. To fit the possible cosmic expansion histories under consideration, for each of them we reconstruct f(R), known as "designer f(R)". We then test the designer f(R) via the cosmic-structure constraints on the metric perturbation ratio Psi/Phi and the effective gravitational coupling G_eff and via the solar-system constraints on the Brans-Dicke theory with the chameleon mechanism. We find that among the designer f(R) models specified by the CPL effective equation of state w_eff, only the model closely mimicking general relativity with a cosmological constant (LambdaCDM) can survive all the tests. Accordingly, these tests rule out the frequently studied "w_eff = -1" designer f(R) models which are distinct in cosmic structures from LambdaCDM. When considering only the cosmological tests, we find that the surviving designer f(R) models, although exist for a variety of w_eff, entail fine-tuning.Comment: 22 pages, 9 figures, LaTe

    Radiative Neutrino Mass, Dark Matter and Leptogenesis

    Get PDF
    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass-generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the universe.Comment: 4 pages, 3 figures. Revised version with improved model. Accepted by PR

    A left-right symmetric model with SU(2)-triplet fermions

    Full text link
    We consider an SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)B−LSU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} left-right symmetric model with three Higgs scalars including an SU(2)LSU(2)_L doublet, an SU(2)RSU(2)_R doublet and an SU(2)L⊗SU(2)RSU(2)_L \otimes SU(2)_R bidoublet. In addition to usual SU(2)-doublet fermions, our model contains SU(2)-triplet fermions with Majorana masses. The neutral components of the left-handed triplets can contribute a canonical seesaw while the neutral components of the right-handed triplets associated with the right-handed neutrinos can contribute a double/inverse-type seesaw. Our model can be embedded into an SO(10) grand unification theory where the triplets belong to the 45=(1,3,1,0)⊕(1,1,3,0)⊕...45=(1,3,1,0) \oplus (1,1,3,0)\oplus ... representations.Comment: 4 pages. To appear in Phys. Rev.

    Neutrino masses, leptogenesis and dark matter in hybrid seesaw

    Get PDF
    We suggest a hybrid seesaw model where relatively ``light''right-handed neutrinos give no contribution to the neutrino mass matrix due to a special symmetry. This allows their Yukawa couplings to the standard model particles to be relatively strong, so that the standard model Higgs boson can decay dominantly to a left and a right-handed neutrino, leaving another stable right-handed neutrino as cold dark matter. In our model neutrino masses arise via the type-II seesaw mechanism, the Higgs triplet scalars being also responsible for the generation of the matter-antimatter asymmetry via the leptogenesis mechanism.Comment: 4 page
    • …
    corecore