49 research outputs found

    Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes.

    Get PDF
    The doublet-spin nature of radical emitters is advantageous for applications in organic light-emitting diodes, as it avoids the formation of triplet excitons that limit the electroluminescence efficiency of non-radical emitters. However, radicals generally show low optical absorption and photoluminescence yields. Here we explain the poor optical properties of radicals based on alternant hydrocarbons, and establish design rules to increase the absorption and luminescence yields for donor-acceptor-type radicals. We show that non-alternant systems are necessary to lift the degeneracy of the lowest energy orbital excitations; moreover, intensity borrowing from an intense high-lying transition by the low-energy charge-transfer excitation enhances the oscillator strength of the emitter. We apply these rules to design tris(2,4,6-trichlorophenyl)methyl-pyridoindolyl derivatives with a high photoluminescence quantum yield (>90%). Organic light-emitting diodes based on these molecules showed a pure-red emission with an over 12% external quantum efficiency. These insights may be beneficial for the rational design and discovery of highly luminescent doublet emitters

    Electron spin resonance resolves intermediate triplet states in delayed fluorescence.

    Get PDF
    Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states

    MicroRNAs and their isomiRs function cooperatively to target common biological pathways

    Get PDF
    Background: Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules. Results: To assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs. We find that isomiRs share sequence and expression characteristics with canonical miRNAs, and are generally strongly correlated with canonical miRNA expression. A large proportion of isomiRs potentially derive from AGO2 cleavage independent of Dicer. We isolated polyribosome-associated mRNA, captured the mRNA-bound miRNAs, and found that isomiRs and canonical miRNAs are equally associated with translational machinery. Finally, we transfected cells with biotinylated RNA duplexes encoding isomiRs or their canonical counterparts and directly assayed their mRNA targets. These studies allow us to experimentally determine genome-wide mRNA targets, and these experiments showed substantial overlap in functional mRNA networks suppressed by both canonical miRNAs and their isomiRs. Conclusions: Together, these results find isomiRs to be biologically relevant and functionally cooperative partners of canonical miRNAs that act coordinately to target pathways of functionally related genes. This work exposes the complexity of the miRNA-transcriptome, and helps explain a major miRNA paradox: how specific regulation of biological processes can occur when the specificity of miRNA targeting is mediated by only 6 to 11 nucleotides

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Fast Transfer of Triplet to Doublet Excitons from Organometallic Host to Organic Radical Semiconductors

    No full text
    Spin triplet exciton formation sets limits on technologies using organic semiconductors that are confined to singlet-triplet photophysics. In contrast, excitations in the spin doublet manifold in organic radical semiconductors can show efficient luminescence. Here the dynamics of the spin allowed process of intermolecular energy transfer from triplet to doublet excitons are explored. A carbene-metal-amide (CMA-CF3) is employed as a model triplet donor host, since following photoexcitation it undergoes extremely fast intersystem crossing to generate a population of triplet excitons within 4 ps. This enables a foundational study for tracking energy transfer from triplets to a model radical semiconductor, TTM-3PCz. Over 74% of all radical luminescence originates from the triplet channel in this system under photoexcitation. It is found that intermolecular triplet-to-doublet energy transfer can occur directly and rapidly, with 12% of triplet excitons transferring already on sub-ns timescales. This enhanced triplet harvesting mechanism is utilized in efficient near-infrared organic light-emitting diodes, which can be extended to other opto-electronic and -spintronic technologies by radical-based spin control in molecular semiconductors.</p
    corecore