485 research outputs found

    Systematic Identification of the Xylophilus Group in the Genus Bursaphelenchus

    Get PDF
    The pine wood nematode (PWN) Bursaphelenchus xylophilus (Steiner & Buhrer, 1934) Nickle, 1970 is the agent responsible for pine wilt disease (PWD). This nematode has been killing native pine trees (Pinus densiflora, P. thunbergii, P. luchuensis) in Japan since the early twentieth century. It is the number one forest pest in Japan and has been spread to China, Korea, Portugal, and Spain. The nematode is native to North America (Canada, USA, Mexico) and is thought to have been carried to Japan at the beginning of the twentieth century on timber exports. Up to now, the genus Bursaphelenchus Fuchs, 1937 comprises nearly 120 species (14 groups). Around 14 species very similar to B. xylophilus are put together and named the xylophilus group. This chapter presents the grouping history, subspecies or genetic types in species of the xylophilus group, and an identification key for 14 species of the xylophilus group, ITS-RFLP identification, and other molecular identification methods are also discussed

    Revisiting the hydrogen storage behavior of the Na-O-H system

    Get PDF
    Solid-state reactions between sodium hydride and sodium hydroxide are unusual among hydride-hydroxide systems since hydrogen can be stored reversibly. In order to understand the relationship between hydrogen uptake/release properties and phase/structure evolution, the dehydrogenation and hydrogenation behavior of the Na-O-H system has been investigated in detail both ex- and in-situ. Simultaneous thermogravimetric-differential thermal analysis coupled to mass spectrometry (TG-DTA-MS) experiments of NaH-NaOH composites reveal two principal features: Firstly, an H2 desorption event occurring between 240 and 380 °C and secondly an additional endothermic process at around 170 °C with no associated weight change. In-situ high-resolution synchrotron powder X-ray diffraction showed that NaOH appears to form a solid solution with NaH yielding a new cubic complex hydride phase below 200 °C. The Na-H-OH phase persists up to the maximum temperature of the in-situ diffraction experiment shortly before dehydrogenation occurs. The present work suggests that not only is the inter-phase synergic interaction of protic hydrogen (in NaOH) and hydridic hydrogen (in NaH) important in the dehydrogenation mechanism, but that also an intra-phase Hδ+… Hδ– interaction may be a crucial step in the desorption process

    Voxel selection in fMRI data analysis based on sparse representation

    Get PDF
    Multivariate pattern analysis approaches toward detection of brain regions from fMRI data have been gaining attention recently. In this study, we introduce an iterative sparse-representation-based algorithm for detection of voxels in functional MRI (fMRI) data with task relevant information. In each iteration of the algorithm, a linear programming problem is solved and a sparse weight vector is subsequently obtained. The final weight vector is the mean of those obtained in all iterations. The characteristics of our algorithm are as follows: 1) the weight vector (output) is sparse; 2) the magnitude of each entry of the weight vector represents the significance of its corresponding variable or feature in a classification or regression problem; and 3) due to the convergence of this algorithm, a stable weight vector is obtained. To demonstrate the validity of our algorithm and illustrate its application, we apply the algorithm to the Pittsburgh Brain Activity Interpretation Competition 2007 functional fMRI dataset for selecting the voxels, which are the most relevant to the tasks of the subjects. Based on this dataset, the aforementioned characteristics of our algorithm are analyzed, and a comparison between our method with the univariate general-linear-model-based statistical parametric mapping is performed. Using our method, a combination of voxels are selected based on the principle of effective/sparse representation of a task. Data analysis results in this paper show that this combination of voxels is suitable for decoding tasks and demonstrate the effectiveness of our method

    Crystal metamorphosis at stress extremes: how soft phonons turn into lattice defects

    Get PDF
    r The Author(s) 2016 At 0 K, phonon instability controls the ideal strength and the ultrafast dynamics of defect nucleation in perfect crystals under high stress. However, how a soft phonon evolves into a lattice defect is still unclear. Here, we develop a full-Brillouin zone soft-phonon-searching algorithm that shows outstanding accuracy and efficiency for pinpointing general phonon instability within the joint material-reciprocal (x–k) spaces. By combining finite-element modeling with embedded phonon algorithm and atomistic simulation, we show how a zone-boundary soft phonon is first triggered in a simple metal (aluminum) under nanoindentation, subsequently leading to a transient new crystal phase and ensuing nucleation of a deformation twin with only one-half of the transformation strain of the conventional twin. We propose a two-stage mechanism governing the transformation of unstable shortwave phonons into lattice defects, which is fundamentally different from that initially triggered by soft long-wavelength phonons. The uncovered material dynamics at stress extremes reveal deep connections between delocalized phonons and localized defects trapped by the full nonlinear potential energy landscape and add to the rich repertoire of nonlinear dynamics found in nature.National Natural Science Foundation of China (Grant No. 50971090)National Natural Science Foundation of China (Grant No. 51071101)National Natural Science Foundation of China (Grant No. 51471107)National Science Foundation (U.S.). Division of Materials Research (DMR-410636

    Measurement framework for assessing disruptive innovations

    Get PDF
    Assessing potential disruptiveness of innovations is an important but challenging task for incumbents. However, the extant literature focuses only on technological and marketplace aspects, and most of the documented methods tend to be case specific. In this study, we present a multidimensional measurement framework to assess the disruptive potential of product innovations. The framework is designed based on the concept that the nature of disruptive innovations is multidimensional. Three aspects are considered, i.e., technological features, marketplace dynamics and external environment. Ten indicators of the three categories are proposed and then connected based on the conceptual and literature analysis. Three innovations, namely, WeChat (successful), Modularised Mobile Phone (failed) and Virtual Reality/Augmented Reality (ongoing), are selected as case studies. A panel of industrial experts with PhD degree in engineering is surveyed. The survey results are calculated and analysed according to the framework and then compared against the developments of the innovations. We also check the robustness of this framework by surveying other groups of people, and the results are nearly identical to the previous findings. This study enables a systematic assessment of disruptive potential of innovations using the framework, providing insights for decisions in product launch and resource allocation.fi=vertaisarvioitu|en=peerReviewed
    corecore