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Crystal metamorphosis at stress extremes: how soft
phonons turn into lattice defects

Xiaohui Liu1,2, Jianfeng Gu1, Yao Shen1 and Ju Li2,3

At 0 K, phonon instability controls the ideal strength and the ultrafast dynamics of defect nucleation in perfect crystals under high

stress. However, how a soft phonon evolves into a lattice defect is still unclear. Here, we develop a full-Brillouin zone

soft-phonon-searching algorithm that shows outstanding accuracy and efficiency for pinpointing general phonon instability within

the joint material-reciprocal (x–k) spaces. By combining finite-element modeling with embedded phonon algorithm and atomistic

simulation, we show how a zone-boundary soft phonon is first triggered in a simple metal (aluminum) under nanoindentation,

subsequently leading to a transient new crystal phase and ensuing nucleation of a deformation twin with only one-half of the

transformation strain of the conventional twin. We propose a two-stage mechanism governing the transformation of unstable short-

wave phonons into lattice defects, which is fundamentally different from that initially triggered by soft long-wavelength phonons.

The uncovered material dynamics at stress extremes reveal deep connections between delocalized phonons and localized defects

trapped by the full nonlinear potential energy landscape and add to the rich repertoire of nonlinear dynamics found in nature.
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INTRODUCTION

The strength of solids at temperature T= 0 K limits the attainable
range of elastic strain engineering,1 whereby finite elastic strain field2,3

ε(x) is tuned to yield better transistors,1 solar cells,2 superconductors4

and other devices. Phonon instability5 controls the ideal strength6 and
influences stress-driven defect nucleation and/or phase transformation
in an initially perfect crystalline lattice at 0 K. When a phonon
frequency ω becomes imaginary, the harmonic oscillation will grow in
amplitude and subsequently break lattice translational symmetry
leading to defect nucleation.7,8

Such processes are believed to occur in some low-temperature
nanoindentation experiments where near-ideal strengths are experi-
mentally measured.6 Previous simulation studies have focused on the
long-wave phonon instability (elastic instability) with wave vector k≈0
(Γ point) in the Brillouin zone (BZ) where an analytical formula can
be derived based on the elastic constants and stress.7–12 However, the
long-wave instability is just one special class of the general phonon
instability in full BZ,13–23 which may be diagnosed by phonon
calculation for homogeneously strained crystals under periodical
boundary conditions (PBCs).5 While for crystals with inhomogeneous
strain during nanoindentation, where BZ and PBC become ill-defined
as a result of losing the lattice translational symmetry, it is reasonable
to turn to examine the structural stability of each infinite lattice Θ that
is homogeneously strained according to the local deformation at each

material point x, if the material strain field is slowly varied. This is
because the incipient instability volume ~O (centered at x) in
nanoindentation with a smooth indenter is usually localized inside
the material without the direct contact with the external
indenter,7,24,25 and its size increases with a decreasing local strain
gradient ∇E.26 When ∇E is rather small, the atomic configuration in
~O approaches that of Θ, and the size of ~O would be significantly
greater than the cutoff radius of the interatomic potential. It thus
allows us, with diminishing error, to inspect the lattice stability of the
infinite and homogeneously strained Θ instead of the inhomogeneous
counterpart. To achieve this, development of new efficient algorithm is
required, because in principle all the phonons in the full BZ (k space)
of Θ for every material point within x space should be treated.
On the other hand, even if the soft phonons could be effectively

pinpointed in crystals, it is still challenging to predict the final defect
configuration. The unstable phonon mode indicates only the initial
linear instability of atomic displacements, and as nonlinear effects
develop, it becomes invalid as a descriptor at finite amplitude.15 In
addition, a phonon is delocalized, and even a soft-phonon wave packet
would span many atomic planes, whereas a defect such as a dislocation
is localized down to one plane,26 implying that there should be a
localization process during the evolution of a soft-phonon pack prior
to defect nucleation. For a long-wave soft phonon, the localization
process into a dislocation loop has been demonstrated.7,8 Although the
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softening of finite-k phonons, particularly, the zone-boundary
phonons, is quite common in shape-memory alloys,27 ferroelectric
compounds28 and two-dimensional materials,18,20,23 their dynamical
evolutions have not been previously reported.
In this paper, we develop a fast and robust full-BZ soft-phonon-

searching algorithm called Phorion. Combining finite-element
modeling incorporating Phorion and atomistic simulations, we show
how a zone-boundary phonon instability is first triggered in a simple
metal (aluminum) under nanoindentation and how it metamorphoses
into a deformation twin (DT). We propose a general mechanism that
governs the dynamical transformation of the soft short-wave phonons.

MATERIALS AND METHODS

Full-BZ soft-phonon-searching algorithm: Phorion
We design Phorion to capture soft phonons in the joint material-reciprocal
(x–k) spaces, in which the positioning of the ‘softest’ phonon is treated as a
linearly constrained optimization problem:

min
x;k

f x; kð Þ � o2= kj j2

s:t: A1?xpb1
A2?kpb2

ð1Þ

where x and k are constrained within the sample volume and the first BZ,
respectively; ω is calculated by diagonalizing the k-dependent dynamical matrix
and taking the lowest eigenvalue at each location x with the finite strain. The
objective function f is set as o2= kj j2 rather than ω2 to prevent the minimum
f (fmin) from being always pinned at the Γ point in the BZ during minimization.
Obviously, once fmin is detected to first hit zero at (x*, k*) during the load
ramp, the position x* and wave vector k*, as well as the polarization vector w*

of the soft phonon can be determined. Because there exist multiple local
minima for the linearly constrained optimization problem, we implement an
effective strategy to capture the global minimum reliably and efficiently by
taking and utilizing the analytical gradients of Equation (1) (see Supplementary
Sec. I for details).

Finite-element modeling
We seamlessly incorporate Phorion into the interatomic potential finite-element
model (IPFEM),7,19 an extended local version of the quasicontinuum method.29

We then use the IPFEM-Phorion approach to simulate a cylindrical (111)
indentation of a single crystal Al plate and pinpoint the phonon instability
within the joint x–k space at 0 K. IPFEM simulation of nanoindentation is
performed using the commercial finite-element software ABAQUS (Dassault
System̀es, Veĺizy-Villacoublay, France) by writing the UMAT subroutine, with
the Zope–Mishin embedded-atom method (EAM) potential of Al30 as the
atomistic constitutive input. A single crystal Al plate, oriented as
x½112� � y½111� � z½110� with a size of 2000× 1000 Å in the x–y plane, is
indented on its top surface of the (111) plane at 0 K by an analytical rigid
cylindrical indenter with a radius of 500 Å lying along z½110�. The
finite-element model, divided into 130 592 linear plane-strain elements, is free
on the top surface, and is fixed at the bottom and in the x direction on both
sides. The indentation proceeds in a displacement control with an indentation
depth of 0.1 Å per step. Phorion is invoked at the end of each step.

Atomistic simulation
We use the LAMMPS code31 to perform the molecular dynamics (MD)
simulation of nanoindentation. The size and boundary conditions of the
indented Al plate in the x–y plane as well as the interatomic potential are the
same as those in IPFEM simulation. PBC is applied in z, with half of the

Figure 1 IPFEM-Phorion and MD simulations of (111) cylindrical nanoindentation of Al. The size of the Al plate in x–y plane is 2000×1000 Å and the
indenter radius is 500 Å. (a) Load (P) versus indentation depth (h) by IPFEM and MD simulations. Phorion and the acoustic tensor formalism embedded in
IPFEM predict a zone-boundary phonon instability and an elastic instability occurring at h=69.7 and 91.5 Å, respectively. (b) Contour of the objective
function f in Equation (1) at h=69.7 Å by IPFEM-Phorion simulation, in which the wave vector k is fixed at ½111�=2. Homogeneous lattice instability site is
indicated by the arrow, where f vanishes first at 184.6 Å beneath the top surface and 79.0 Å away from the central y axis. (c) Phonon spectra of the Al
crystal lattice strained according to the local deformation gradient of the predicted lattice instability site shown in (b), based on the Zope–Mishin Al EAM
potential (blue solid) and ab initio calculation using the Goedecker–Teter–Hutter Al pseudopotential (red dot). Both predict an acoustic phonon branch
softening at L ¼ ½111�=2, with a polarization displacement vector w�==½110�. (d) Atomic configurations at the early stages of DT nucleation by MD
simulation. Insets show magnified snapshots of how the DT is homogeneously nucleated. DT embryo center is positioned at 186.9 Å beneath the top surface
and 80.7 Å displaced from the central y axis. Atoms are colored according to the central symmetric parameter.24 IPFEM, interatomic potential finite-element
model; MD, molecular dynamics.
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thickness greater than the cutoff radius given by the Zope–Mishin potential.
About two million atoms are contained in the simulation box. Following
ref. 24, nanoindentation is implemented by introducing an external repulsive
potential acting upon the atoms on the top surface with a force constant of
10 eV Å− 3; this virtual indenter proceeds at a speed of 1 m s−1. The time step is
1 fs, and the temperature is controlled at 1 K using an NVT ensemble with the
Nosé–Hoover thermostat.32,33

Ab initio calculation
To verify that the soft phonon predicted by IPFEM-Phorion based on the
Zope–Mishin potential is real, we use the ABINIT code34 to perform an
ab initio calculation of the phonon spectra of the homogeneously strained
lattice at the predicted instability site. The Goedecker–Teter–Hutter Al
pseudopotential is adopted within the local density approximation35–37 with a
20 Ha energy cutoff. Marzari’s ‘cold-smearing’ method38 is used for BZ
integrations with a smearing parameter of 0.04 Ha. The lattice constant a0 of
Al is first obtained using a 12× 12×12 Monkhorst–Pack39 k-point grid and is
found to be 3.99 Å, in good agreement with the experimental 4.03 Å40 value
and the 4.05 Å value given by the Zope–Mishin potential. The Al lattice with
the calculated a0 is then subjected to a homogeneous strain according to the
local deformation gradient at the IPFEM-Phorion-predicted instability site; the
phonon frequencies of which are calculated using the density functional
perturbation theory41 with a 20× 20×20 Monkhorst–Pack k-point grid.

RESULTS AND DISCUSSION

Figure 1a shows the indentation load (P) versus the indentation
depth (h) response from the IPFEM simulation. With remarkable
computational efficiency (Supplementary Sec. I), Phorion predicts that
a zone-boundary phonon instability occurs inside the crystal at
h= 69.7 Å (Figure 1b), with a local Mises shear stress as large as
12.1 GPa. Examination of the phonon dispersion at the instability site
based on the Zope–Mishin potential (Figure 1c) shows that a
transverse acoustic phonon branch softens at L with a wave vector
k* of ½111�=2 and polarization vector w�==½110�. This soft mode is
also verified by the ab initio calculation. To compare, we also utilize
the acoustic tensor formalism42,43 (equivalent to the Λ criterion7)
within IPFEM to predict the onset of elastic (long-wave) instability.
As shown in Figure 1a, the critical h is predicted to be 91.5 Å,
occurring much later than the zone-boundary phonon instability.
Moreover, the instability position and the mode are also different
(Supplementary Figure S4).
To verify the bi-continuum prediction (joint x�k space), we have

carried out direct MD simulation using the same empirical potential.

As shown in Figure 1a, the P–h curves obtained by MD and IPFEM
simulations agree very well before the first load drop in MD, and the
critical h of 70.6 Å is very close to that predicted by Phorion, whereas
the prediction by the k≈0 acoustic tensor criterion lags far behind. In
MD, the load drop is found to correspond to the homogeneous
nucleation of a DT, and the position of the DT embryo center agrees
nearly perfectly with Phorion’s prediction (Figure 1d). The observed
twinning plane of ð111Þ is consistent with k* provided by Phorion.
However, the DT shear strain direction, which is ½112�, differs from
the phonon polarization direction w�==½110�; indeed, the two are
perpendicular. This deviates greatly from the previous understanding
for long-wave soft phonons.8 We also note a curious fact that the
phonon-predicted (k*, w*) shear between adjacent atomic planes has
zero Schmid factor in Figure 1b, so no mechanical work can be
conducted during the initial bifurcation instability. It is then intriguing
to connect the predicted soft-phonon mode with the homogeneous
nucleation of the DT embryo.
To unravel this continuum-atomic connection, we perform a

focused analysis of the evolution of Phorion-pinpointed soft phonon
by direct MD simulation. First, an Al supercell under PBC is created
with a homogeneous strain according to the local deformation
gradient tensor at the instability site (Figure 1b), as shown in
Figure 2a. It is oriented such that its x and z axes are along the soft
phonon’s w�==½110� and k�==ð111Þ plane normal, respectively. A
low-amplitude (perturbational), high-wave vector atomic displace-
ment wave according to the soft phonon’s polarization is then injected
into the supercell (Figure 2a). Its ultrafast evolution dynamics are then
traced directly with MD. Figure 2b shows the evolution of the
perturbational wave prior to defect nucleation. It can be observed
that, instead of continuous growth, the wave experiences an amplitude
oscillation while keeping its original shape up to ~ 19.8 ps (Figure 2b
I–IV). Then its upper and lower envelopes bend into sinusoidal
shapes, and their amplitudes continue to grow until ~ 23.5 ps
(Figure 2b V–VI). Finally, the envelope curves evolve into a defect
embryo residing in only a couple of atomic layers and forms a
conspicuous displacement shuffling along x½110� within the packet
(Figure 2b VII–VIII).
To understand the zone-boundary phonon driven process above,

we analyze the temporal evolution of the displacement in x (ux) of
each ð111Þ atomic layer. As shown in Figure 2c, we may divide the
odd- and even-numbered ð111Þ atomic layers into A1 and A2 groups,

Figure 2 Structural metamorphosis of a perturbed Al supercell. (a) Al supercell under PBCs is subjected to the same strain as that at the lattice instability
site predicted by Phorion shown in Figure 1b. It is perturbed by a plane wave according to the instability mode of the soft L phonon shown in Figure 1c, with
an initial amplitude w0 of 0.01 Å. (b, d and e) Spatial evolutions of the displacements of the 36 ð111Þ atomic layers along x, y and z, respectively.
(c) Temporal evolution of the displacements x of the ð111Þ atomic layers (in blue), which are initially bunched together in two groups, A1 and A2. They are
compared with the linear exponential growth curves (in red), in which the L phonon’s imaginary circular frequency ω=0.406i THz. (f) Atomic configuration
of the supercell at 24.05 ps, in which a deformation twin is nucleated. Atoms are colored according to the central symmetry parameter, with red atoms
constituting two twinning planes. PBC, periodical boundary condition.
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in which their ux are initially bunched together, thereby being grouped
into the initial lower- and upper-straight envelope lines. Such
bunching is maintained until ~ 19.8 ps, accounting for the
undistortion of the wave profile shown in Figure 2b I–IV. During
this stage, ux of A1 and A2 groups first follow linear exponential
growth as ux tð Þ ¼ 81

2w0 eiot þ e�iot
� �

with an imaginary ω within
the harmonic approximation, where w0 is the initial amplitude of the
perturbational wave. However, they then deviate from this pure
amplitude growth and start to oscillate. Such a response is attributed
to the anharmonic terms in the total potential energy expansion
ΔC ¼ c2u2A þ c4u4A þ?, where uA is the phonon displacement. The
lack of the cubic term is owing to the symmetry of the zone-boundary
phonon mode (see Supplementary Sec. III for the analytical expres-
sions of ΔΨ). Figure 3 compares ΔΨ− uA of the harmonic expansion
with that including the fourth-order anharmonic term. In contrast to a
downward parabola of the harmonic expansion, the significant
anharmonic effect yields a double-well potential, which in principle
could arrest the perturbational wave and suppress the amplitude

growth. The behavior of the injected wave in stages I–IV in Figure 2b
could thus be understood. Indeed, using the Landau polynomials
language of phase transitions, what Figure 3 describes is a phase
transformation that should occur after the L-phonon ‘spinodal’
instability (in displacement, instead of chemical concentration) to a
new crystal structure. In Figure 3, adjacent ð111Þ atomic layers
undergo displacement shuffling along ½110� on the path from the
center to one of the double wells, which is actually accompanied by a
phase transformation from the original face-centered cubic (FCC)
phase to a new triclinic (TRI) phase. As shown in the primitive cell of
the TRI structure, there exist two basis atoms occupying two sites
(denoted as B1 and B2) on adjacent ð111Þ atomic layers that exactly
belong to the A1 and A2 groups, respectively.
However, this phase transformation, triggered by the zone-

boundary soft phonon, does not significantly relax the strain energy,
and the TRI phase is still subjected to high stress. Therefore, it is still
necessary to keep inspecting its structural instability. If the TRI
structure were mechanically stable, the injected perturbational and
subsequently grown wave could be dissipated by phonon scattering44

and permanently arrested by the double-well potential, which would
lead to a polymorphic phase transition such as those observed in some
indentation experiments.45,46 Otherwise, the second-generation lattice
instability within the TRI structure would affect the wave growth and
may drive it to escape from the TRI phase in a different direction not
reflected in the Landau polynomial plot of Figure 3.
In fact, second-generation phonon spectra analysis shows that the

TRI structure is elastically unstable for a long wave with k==½001�TRI
(Figure 4a), where [001]TRI is a reciprocal vector to the real-space
lattice vectors of TRI shown in Figure 3. For the present supercell with
a limited size along z, only a soft phonon with k of ½001�TRI=18 is
allowed to be excited and is expected to generate two independent
unstable long waves denoted as β1 and β2 that involve the collective
movement of the B1- and B2-sited (or A1- and A2-grouped) atoms,
respectively. Eigenmode analysis shows that each of the long waves can
be decomposed into three polarization components including two
transverse waves bxi and byi oscillating along x and y, respectively, and
a longitudinal wave bzi oscillating along z (i= 1, 2), with their
normalized amplitudes v and phase φ shown in Supplementary
Table S3. As the displacement shuffling along ½110� breaks the central
symmetry of B1- and B2-sited atoms in the TRI structure, these

Figure 3 Response of the potential energy change (ΔΨ) of the Al supercell
to the phonon displacement (uA) of the perturbational wave. ΔΨ can
be fitted as c2u2

A þ c4u4
A (in blue), where c2=−0.993 eV Å�2 and

c4=−949.7 eV Å�4, compared with the harmonic-approximation response
following DC ¼ c2u2

A ¼ 1
2Nmo2u2

A (in red), where N is the number of atoms
in the supercell and m is the atomic mass of Al. Primitive cells of the
FCC and TRI structures, corresponding to the center and the bottom of the
double wells, respectively, are shown on the right, and they have
dTRI
ð001Þ ¼ 2dFCC

ð111Þ. Two basis atoms in the TRI primitive cell are colored with
gray and green, respectively. TRI, triclinic.

Figure 4 Near-Γ phonon instability of the TRI structure. (a) Phonon spectra of the TRI structure along the Γ-Z path in the BZ. For the present supercell with
lz ¼ 18dTRI

ð001Þ, there are nine k points allowable distributed uniformly between (Γ, Z], of which the frequencies on the softened phonon branch are denoted
as solid dots. Among these, only the k point at ½001�TRI=18 has an imaginary frequency, denoted as the red dot. (b) Wave profiles with normalized
amplitudes of two unstable long waves β1 and β2 excited by the soft phonon denoted in (a). Two long waves spatially constitute a double helix, with their
polarization components shown on the projective planes. BZ, Brillouin zone; TRI, triclinic.
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polarization components have different phases, yielding a double-helix
profile for the β1–β2 pair (Figure 4b). For the b

x
1 and bx2 waves, owing

to a phase difference of π, their superposition upon the original
injected wave would bend its lower and upper envelope lines into a
pair of sinusoidal curves oscillating oppositely and coherently, and
drive the system to escape from the double-well potential; this explains
the profile of the injected wave shown in Figure 2b V. The continuous
amplitude growth of the sinusoidal envelope curves (Figure 2b VI)
followed by progressive localization (Figure 2b VII–VIII) agrees well
with the localization behavior of an unstable elastic wave,8 even
though ‘wave-front steepening’ that breaks the positive strain–negative
strain symmetry is not observed, resulting from the vanishing shear
stress component τzx= 0 (zero Schmid factor) here.
As indicated above, the TRI structure would also generate polariza-

tion components oscillating along y and z, which contribute to the DT
nucleation as well. For the by1 and by2 waves with the same v and φ
(Supplementary Table S3), they are expected to be merged into a
single long wave βy with phase π/2 ahead of bx1, involving collective
displacements along y of all the A1- and A2-grouped atoms. Such a
prediction is verified by tracing the evolution of uy for all the ð111Þ
atomic layers, shown in Figure 2d. It can be observed that a single long
uy wave is excited, followed by the amplitude growth (Figure 2d I–II),
wave-front steepening (Figure 2d III), and shrinking into a couple of
atomic layers and thus producing a uniform shear along ½112�
(Figure 2d IV); this wave actually behaves as an unstable elastic
wave.8 Simultaneously, a single uz wave also develops owing to
crystallographic shear-tension coupling8 and experiences the dynamics
similar to those of the uy wave (Figure 2e), albeit with much smaller
amplitude.
Therefore, eventually, the TRI phase turns out to be just an

intermediate product, decomposing within tens of picoseconds by
the second-stage, near-Γ phonon instability to evolve into a lattice
defect–DT, as shown in Figure 2f. Its atomic structure is verified to be
consistent with that in Figure 1d, proving the continuum-atomic
linkage and the validity of our bi-continuum prediction (joint x�k
space) as well as focal study of nucleation dynamics with PBCs.
Unexpectedly, and quite distinct from a conventional DT in which all
atomic planes slip along the same direction (same Shockley partial
Burgers vector) thereby producing a uniform shear strain, the DTs in
Figure 1d and 2f have two different slip vectors alternating along ½121�
and ½211� on every successive ð111Þ planes. In fact, our DT embryo is
mainly achieved by the superposition of the displacement shuffling
along ½110� resulting from the localization of the bx1 and bx2 waves,
and the shear strain along ½112� contributed by the accumulated
deformation before the L-phonon softening plus the localization of the
βy wave (βz contribution can be neglected owing to a small amplitude).
The two slip vectors are produced through 7 1

4½110� þ 1
12½112� ¼

1
6½121� and 1

6½211� for adjacent ð111Þ planes, and the stacking order is
thus changed from the original ‘?ABCABCAB?’, for example,
to ‘?A BACBAC A?’. In other words, a DT with a width of 5dð111Þ
nucleates homogeneously in the lattice (see Supplementary Figure S5
for the schematic of how the stacking order is changed). If viewed
from ½110�, the DT has an averaged transformation shear along ½112�,
where the average relative slip vector between two adjacent ð111Þ
planes is 1

12½112�, only 50% of that of the conventional textbook
DT (Supplementary Figure S6), leading to a significantly smaller
transformation strain and smaller elastic energy of embedding.
Interestingly, our DT embryo shows a crude resemblance to the DT
growing from a grain boundary following a dislocation-reaction and
cross-slip mechanism recently proposed by Zhu et al.,47,48 which also
incorporates two different slip vectors or alternating Shockley partial

Burgers vectors. To be revealed as the product of two degenerate soft
phonons is quite a surprise, though.

CONCLUSIONS

In summary, we have developed a robust full-BZ soft-phonon-
searching algorithm, which can be combined with other multiscale
simulation methods or ab initio calculation tools to predict the lattice
instability and the ideal strength of materials that enable elastic strain
engineering.1 We have revealed how a continuum soft phonon evolves
into a discrete atomic defect within tens of picoseconds in an indented
perfect crystal at stress extreme. This involves four stages: (1) linear
growth of an unstable short wave triggered by a softened L phonon,
well described by the harmonic-approximation phonon theory;
(2) arrest of the short wave by a double-well potential in the form
of an anharmonic Landau polynomial, indicating a polymorphic phase
transformation from FCC to TRI; (3) excitation of two independent
unstable long waves by a soft near-Γ phonon in the TRI lattice; and
(4) growth and localization of the two long waves until trapped in a
couple of atomic layers, where an unconventional DT embryo with
staggered slip Burgers vectors and 50% of the total transformation
strain of the textbook FCC DT is formed. In this two-stage
soft-phonon cascade, the Landau polynomial has a critical role, with
the anharmonic energy terms arresting the dynamics of an L phonon
in FCC followed by a near-Γ phonon in TRI. In Supplementary Sec.
IV, we show an analytical scaling theory that explains why an unstable
long elastic wave is much more difficult to be trapped in a polynomial
energy landscape.
The Figure 3 scenario is not unlike the well-known temperature-

driven phase transformation within a double-well potential49 in
phonon coordinate. However, a salient feature of the stress-driven
martensitic transformation owing to a softened zone-boundary
phonon is that the new phase still withstands high stress, and it is
thus highly likely to be unstable as well and prone to the next-stage
evolution. This is because a first-generation transition yields little
transformation strain, as the zone-boundary phonon has too short
wavelength, unlike a long-wavelength phonon that can significantly
relax the strain in a local region. In view of this, we believe that the
proposed two-stage transformation mechanism can generally describe
the dynamics of the homogeneous defect nucleation induced by a
softened zone-boundary (or nearby) phonon at stress extremes. As we
show in Supplementary Sec. V, it can also fully account for the
homogeneous nucleation of a dislocation. The general utility of
IPFEM-Phorion bi-continuum stability analysis has been repeatedly
verified by our direct atomistic simulations. The uncovered material
dynamics at stress extremes reveal deep connections between deloca-
lized phonons in x and k continua—a wave phenomenon controlled
by the harmonic part of potential—and localized atomic defects
trapped by the full nonlinear interatomic potential energy landscape,
which adds to the rich repertoire of nonlinear dynamics found in
nature.50,51
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