793 research outputs found

    Saturation of front propagation in a reaction-diffusion process describing plasma damage in porous low-k materials

    Get PDF
    We propose a three-component reaction-diffusion system yielding an asymptotic logarithmic time-dependence for a moving interface. This is naturally related to a Stefan-problem for which both one-sided Dirichlet-type and von Neumann-type boundary conditions are considered. We integrate the dependence of the interface motion on diffusion and reaction parameters and we observe a change from transport behavior and interface motion \sim t^1/2 to logarithmic behavior \sim ln t as a function of time. We apply our theoretical findings to the propagation of carbon depletion in porous dielectrics exposed to a low temperature plasma. This diffusion saturation is reached after about 1 minute in typical experimental situations of plasma damage in microelectronic fabrication. We predict the general dependencies on porosity and reaction rates.Comment: Accepted for publication in Phys. Rev.

    Yukawa potentials in systems with partial periodic boundary conditions II : Lekner sums for quasi-two dimensional systems

    Full text link
    Yukawa potentials may be long ranged when the Debye screening length is large. In computer simulations, such long ranged potentials have to be taken into account with convenient algorithms to avoid systematic bias in the sampling of the phase space. Recently, we have provided Ewald sums for quasi-two dimensional systems with Yukawa interaction potentials [M. Mazars, {\it J. Chem. Phys.}, {\bf 126}, 056101 (2007) and M. Mazars, {\it Mol. Phys.}, Paper I]. Sometimes, Lekner sums are used as an alternative to Ewald sums for Coulomb systems. In the present work, we derive the Lekner sums for quasi-two dimensional systems with Yukawa interaction potentials and we give some numerical tests for pratical implementations. The main result of this paper is to outline that Lekner sums cannot be considered as an alternative to Ewald sums for Yukawa potentials. As a conclusion to this work : Lekner sums should not be used for quasi-two dimensional systems with Yukawa interaction potentials.Comment: 25 pages, 5 figures and 1 tabl

    Optical coherence tomography in patients with chronic migraine: Literature review and update

    Get PDF
    Migraine is a chronic disease characterized by unilateral, pulsating, and often moderate-to-severe recurrent episodes of headache with nausea and vomiting. It affects approximately 15% of the general population, yet the underlying pathophysiological mechanisms are not fully understood. Optical coherence tomography (OCT) is a safe and reproducible diagnostic technique that utilizes infrared wavelengths and has a sensitivity of 8-10 µm. It can be used to measure thinning of the retinal nerve fiber layer (RNFL) in some neurological disorders. Although ophthalmologists are often the first specialists to examine patients with migraine, few studies have addressed the involvement of the optic nerve and retino-choroidal structures in this group. We reviewed the literature on the etiological and pathological mechanisms of migraine and the relationship between recurrent constriction of cerebral and retrobulbar vessels and ischemic damage to the optic nerve, retina, and choroid. We also assessed the role of OCT for measuring peripapillary RNFL thickness and macular and choroidal changes in migraine patients. There is considerable evidence of cerebral and retrobulbar vascular involvement in the etiology of migraine. Transitory and recurrent constriction of the retinal and ciliary arteries may cause ischemic damage to the optic nerve, retina, and choroid in patients with migraine. OCT to assess the thickness of the peripapillary RNFL, macula, and choroid might increase our understanding of the pathophysiology of migraine and facilitate diagnosis of retino-choroidal compromise and follow-up of therapy in migraine patients. Future studies should determine the usefulness of OCT findings as a biomarker of migraine

    Scaling of viscous dynamics in simple liquids:theory, simulation and experiment

    Get PDF
    Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. Many liquids have been shown to obey power-law density scaling, according to which the relaxation time is a function of density to some power over temperature. We show that power-law density scaling breaks down for larger density variations than usually studied. This is demonstrated by simulations of the Kob-Andersen binary Lennard-Jones mixture and two molecular models, as well as by experimental results for two van der Waals liquids. A more general form of density scaling is derived, which is consistent with results for all the systems studied. An analytical expression for the scaling function for liquids of particles interacting via generalized Lennard-Jones potentials is derived and shown to agree very well with simulations. This effectively reduces the problem of understanding the viscous slowing down from being a quest for a function of two variables to a search for a single-variable function.Comment: 7 pages, 5 figure

    Fluctuating fire regimes and their historical effects on genetic variation in an endangered shrubland specialist

    Get PDF
    The Pleistocene was characterized by worldwide shifts in community compositions. Some of these shifts were a result of changes in fire regimes, which influenced the distribution of species belonging to fire-dependent communities. We studied an endangered juniper–oak shrubland specialist, the black-capped vireo (Vireo atricapilla). This species was locally extirpated in parts of Texas and Oklahoma by the end of the 1980s as a result of habitat change and loss, predation, brood parasitism, and anthropogenic fire suppression. We sequenced multiple nuclear loci and used coalescence methods to obtain a deeper understanding of historical population trends than that typically available from microsatellites or mtDNA. We compared our estimated population history, a long-term history of the fire regime and ecological niche models representing the mid-Holocene, last glacial maximum, and last interglacial. Our Bayesian skyline plots showed a pattern of historical population fluctuation that was consistent with changing fire regimes. Genetic data suggest that the species is genetically unstructured, and that the current population should be orders of magnitude larger than it is at present. We suggest that fire suppression and habitat loss are primary factors contributing to the recent decline of the BCVI, although the role of climate change since the last glacial maximum is unclear at present

    Swarming in shallow waters

    Get PDF
    A swarm is a collection of separate objects that move autonomously in the same direction in a concerted fashion. This type of behavior is observed in ensembles of various organisms but has proven inherently difficult to realize in artificial chemical systems, where the components have to self-assemble dynamically and, at the same time, propel themselves. This paper describes a class of systems in which millimeter-sized components interact hydrodynamically and organize into dissipative structures that swarm in thin fluid layers. Depending on the geometry of the particles, various types of swarms can be engineered, including ensembles that rotate, follow a "leader", or are pushed in front of a larger particle

    Rural health service planning: the need for a comprehensive approach to costing

    Get PDF
    The precipitous closure of rural maternity services in industrialized countries over the past two decades is underscored in part by assumptions of efficiencies of scale leading to cost-effectiveness. However, there is scant evidence to support this and the costing evidence that exists lacks comprehensiveness. To clearly understand the cost-effectiveness of rural services we must take the broadest societal perspective to include not only health system costs, but also those costs incurred at the family and community levels. We must consider manifest costs (hard, easily quantifiable costs, both direct and indirect) and latent costs (understood as what is sacrificed or lost), and take into account cost shifting (reallocating costs to different parts of the system) and cost downloading (passing costs on to women and families). Further, we must compare the costs of having a rural maternity service to those incurred by not having a service, a comparison that is seldom made. This approach will require determining a methodological framework for weighing all costs, one which will likely involve attention to the rich descriptions of those experiencing loss

    Charge-density-wave instability in the Holstein model with quartic anharmonic phonons

    Full text link
    The molecular-crystal model, that describes a one-dimensional electron gas interacting with quartic anharmonic lattice vibrations, offers great potentials in the mapping of a relatively wide range of low-dimensional fermion systems coupled to optical phonons onto quantum liquids with retarded interactions. Following a non-perturbative approach involving non-Gaussian partial functional integrations of lattice degrees of freedom, the exact expression of the phonon-mediated two-electron action for this model is derived. With the help of Hubbard-Stratonovich transformation the charge-density-wave instability is examined in the sequel, with particular emphasis on the effect of the quartic anharmonic phonons on the charge-density-wave transition temperature.Comment: 12 pages, 3 figure
    corecore