59 research outputs found

    An insight into the phylogenetic history of HOX linked gene families in vertebrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human chromosomes 2q, 7, 12q and 17q show extensive intra-genomic homology, containing duplicate, triplicate and quadruplicate paralogous regions centered on the HOX gene clusters. The fact that two or more representatives of different gene families are linked with HOX clusters is taken as evidence that these paralogous gene sets might have arisen from a single chromosomal segment through block or whole chromosome duplication events. This would imply that the constituent genes including the HOX clusters reflect the architecture of a single ancestral block (before vertebrate origin) where all of these genes were linked in a single copy.</p> <p>Results</p> <p>In the present study we have employed the currently available set of protein data for a wide variety of vertebrate and invertebrate genomes to analyze the phylogenetic history of 11 multigene families with three or more of their representatives linked to human HOX clusters. A topology comparison approach revealed four discrete co-duplicated groups: group 1 involves the genes from GLI, HH, INHB, IGFBP (cluster-1), and SLC4A families; group 2 involves ERBB, ZNFN1A, and IGFBP (cluster-2) gene families; group 3 involves the HOX clusters and the SP gene family; group 4 involves the integrin beta chain and myosine light chain families. The distinct genes within each co-duplicated group share the same evolutionary history and are duplicated in concert with each other, while the constituent genes of two different co-duplicated groups may not share their evolutionary history and may not have duplicated simultaneously.</p> <p>Conclusion</p> <p>We conclude that co-duplicated groups may themselves be remnants of ancient small-scale duplications (involving chromosomal segments or gene-clusters) which occurred at different time points during chordate evolution. Whereas the recent combination of genes from distinct co-duplicated groups on different chromosomal regions (human chromosomes 2q, 7, 12q, and 17q) is probably the outcome of subsequent rearrangement of genomic segments, including syntenic groups of genes.</p

    Evolution and Functional Diversification of the GLI Family of Transcription Factors in Vertebrates

    Get PDF
    Background: In vertebrates the “SONIC HEDGEHOG” signalling pathway has been implicated in cell-fate determination, proliferation and the patterning of many different cell types and organs. As the GLI family members (GLI1, GLI2 and GLI3) are key mediators of hedgehog morphogenetic signals, over the past couple of decades they have been extensively scrutinized by genetic, molecular and biochemical means. Thus, a great deal of information is currently available about the functional aspects of GLI proteins in various vertebrate species. To address the roles of GLI genes in diversifying the repertoire of the Hh signalling and deploying them for the vertebrate specifications, in this study we have examined the evolutionary patterns of vertebrate GLI sequences within and between species. Results: Phylogenetic tree analysis suggests that the vertebrate GLI1, GLI2 and GLI3 genes diverged after the separation of urochordates from vertebrates and before the tetrapods-bony fishes split. Lineage specific duplication events were also detected. Estimation of mode and strength of selection acting on GLI orthologs demonstrated that all members of the GLI gene family experienced more relaxed selection in teleost fish than in the mammalian lineage. Furthermore, the GLI1 gene appeared to have been exposed to different functional constraints in fish and tetrapod lineages, whilst a similar level of functional constraints on GLI2 and GLI3 was suggested by comparable average non-synonymous (Ka) substitutions across the lineages. A relative rate test suggested that the majority of the paralogous copies of the GLI family analyzed evolve

    Human intronic enhancers control distinct sub-domains of Gli3 expression during mouse CNS and limb development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zinc-finger transcription factor GLI3 is an important mediator of Sonic hedgehog signaling and crucial for patterning of many aspects of the vertebrate body plan. In vertebrates, the mechanism of SHH signal transduction and its action on target genes by means of activating or repressing forms of GLI3 have been studied most extensively during limb development and the specification of the central nervous system. From these studies it has emerged, that <it>Gli3 </it>expression must be subject to a tight spatiotemporal regulation. However, the genetic mechanisms and the cis-acting elements controlling the expression of <it>Gli3 </it>remained largely unknown.</p> <p>Results</p> <p>Here, we demonstrate in chicken and mouse transgenic embryos that human <it>GLI3</it>-intronic conserved non-coding sequence elements (CNEs) autonomously control individual aspects of <it>Gli3 </it>expression. Their combined action shows many aspects of a <it>Gli3</it>-specific pattern of transcriptional activity. In the mouse limb bud, different CNEs enhance <it>Gli3</it>-specific expression in evolutionary ancient stylopod and zeugopod versus modern skeletal structures of the autopod. Limb bud specificity is also found in chicken but had not been detected in zebrafish embryos. Three of these elements govern central nervous system specific gene expression during mouse embryogenesis, each targeting a subset of endogenous <it>Gli3 </it>transcription sites. Even though fish, birds, and mammals share an ancient repertoire of gene regulatory elements within <it>Gli3</it>, the functions of individual enhancers from this catalog have diverged significantly. During evolution, ancient broad-range regulatory elements within <it>Gli3 </it>attained higher specificity, critical for patterning of more specialized structures, by abolishing the potential for redundant expression control.</p> <p>Conclusion</p> <p>These results not only demonstrate the high level of complexity in the genetic mechanisms controlling <it>Gli3 </it>expression, but also reveal the evolutionary significance of <it>cis</it>-acting regulatory networks of early developmental regulators in vertebrates.</p

    Localization, analysis and evolution of transposed human immunoglobulin VK genes

    Get PDF
    The localization of Vκ gene regions to chromosome 2, on which the κ locus is located, and to other chromosomes is described. The Vκ genes that have been transposed to other chromosomes are called orphons. The finding of two new Vκ genes on chromosome 22 is reported. A Vκ II gene of this region and two Vκ I genes of the Chr 1 and the cos 118 regions were sequenced. The two Vκ I orphon sequences and two others that had been determined previously were 97.5% identical, indicating that they may have evolved from a common ancestor by amplification. A model of the evolution of the human Vκ orphons is discussed. Author Keywords: Human-rodent cell hybrids; cosmids; restriction maps; ligation artifacts; orphon; recombinant DNA Abbreviations: aa, amino acid(s); bp, base pair(s); Chr1, Vκ gene-containing regions of chromosomes 1; Chr22, Vκ gene-containing regions of chromosomes 22; FR, framework regions; CDR, complementary determining regions; kb, kilo-base(s) or 1000 bp; L, L′, parts of a leader gene segment; m219-1, the first subclone of the cosmid clone cos 219; orphon, Vκ gene outside the κ locus on chromosome 2pl2; SSC, 0.15 M NaCl, 0.015 M Na3-citrate, pH 7.6; V, variable gene segments; J, joining gene segments; C, constant gene segments; Vκ I to Vκ IV, variable gene segments of immunoglobulin light chains of the κ type belonging to subgroups I to IV; for reasons of simplicity Vκ gene segments are generally called Vκ gene

    Synpolydactyly and HOXD13 polyalanine repeat: addition of 2 alanine residues is without clinical consequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type II syndactyly or synpolydactyly (SPD) is clinically very heterogeneous, and genetically three distinct SPD conditions are known and have been designated as SPD1, SPD2 and SPD3, respectively. SPD1 type is associated with expansion mutations in <it>HOXD13</it>, resulting in an addition of ≥ 7 alanine residues to the polyalanine repeat. It has been suggested that expansions ≤ 6 alanine residues go without medical attention, as no such expansion has ever been reported with the SPD1 phenotype.</p> <p>Methods</p> <p>We describe a large Pakistani and an Indian family with SPD. We perform detailed clinical and molecular analyses to identify the genetic basis of this malformation.</p> <p>Results</p> <p>We have identified four distinct clinical categories for the SPD1 phenotype observed in the affected subjects in both families. Next, we show that a milder foot phenotype, previously described as a separate entity, is in fact a part of the SPD1 phenotypic spectrum. Then, we demonstrate that the phenotype in both families segregates with an identical expansion mutation of 21 bp in <it>HOXD13</it>. Finally, we show that the HOXD13 polyalanine repeat is polymorphic, and the expansion of 2 alanine residues, evident in unaffected subjects of both families, is without clinical consequences.</p> <p>Conclusion</p> <p>It is the first molecular evidence supporting the hypothesis that expansion of ≤ 6 alanine residues in the HOXD13 polyalanine repeat is not associated with the SPD1 phenotype.</p

    Point Mutations in GLI3 Lead to Misregulation of its Subcellular Localization

    Get PDF
    Background Mutations in the transcription factor GLI3, a downstream target of Sonic Hedgehog (SHH) signaling, are responsible for the development of malformation syndromes such as Greig-cephalopolysyndactyly-syndrome (GCPS), or Pallister-Hall-syndrome (PHS). Mutations that lead to loss of function of the protein and to haploinsufficiency cause GCPS, while truncating mutations that result in constitutive repressor function of GLI3 lead to PHS. As an exception, some point mutations in the C-terminal part of GLI3 observed in GCPS patients have so far not been linked to loss of function. We have shown recently that protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity a of GLI3 function. Principal Findings We have shown recently that protein phosphatase 2A (PP2A) and the ubiquitin ligase MID1 regulate the nuclear localization and transcriptional activity of GLI3. Here we show mapping of the functional interaction between the MID1-α4-PP2A complex and GLI3 to a region between amino acid 568-1100 of GLI3. Furthermore we demonstrate that GCPS-associated point mutations, that are located in that region, lead to misregulation of the nuclear GLI3-localization and transcriptional activity. GLI3 phosphorylation itself however appears independent of its localization and remains untouched by either of the point mutations and by PP2A-activity, which suggests involvement of an as yet unknown GLI3 interaction partner, the phosphorylation status of which is regulated by PP2A activity, in the control of GLI3 subcellular localization and activity. Conclusions The present findings provide an explanation for the pathogenesis of GCPS in patients carrying C-terminal point mutations, and close the gap in our understanding of how GLI3-genotypes give rise to particular phenotypes. Furthermore, they provide a molecular explanation for the phenotypic overlap between Opitz syndrome patients with dysregulated PP2A-activity and syndromes caused by GLI3-mutations

    Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers

    Get PDF
    The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have not yet been reported. We show that 11 ancient genomic DNA signatures, conserved from the pufferfish Takifugu (Fugu) rubripes to man, are distributed throughout the introns of human GLI3. They map within larger conserved non-coding elements (CNEs) that are found in the tetrapod lineage. Full length CNEs transiently transfected into human cell cultures acted as cell type specific enhancers of gene transcription. The regulatory potential of these elements is conserved and was exploited to direct tissue specific expression of a reporter gene in zebrafish embryos. Assays of deletion constructs revealed that the human-Fugu conserved sequences within the GLI3 intronic CNEs were essential but not sufficient for full-scale transcriptional activation. The enhancer activity of the CNEs is determined by a combinatorial effect of a core sequence conserved between human and teleosts (Fugu) and flanking tetrapod-specific sequences, suggesting that successive clustering of sequences with regulatory potential around an ancient, highly conserved nucleus might be a possible mechanism for the evolution of cis-acting regulatory elements

    The morbid anatomy of the human genome

    No full text
    corecore