168 research outputs found

    Uniform random generation of large acyclic digraphs

    Full text link
    Directed acyclic graphs are the basic representation of the structure underlying Bayesian networks, which represent multivariate probability distributions. In many practical applications, such as the reverse engineering of gene regulatory networks, not only the estimation of model parameters but the reconstruction of the structure itself is of great interest. As well as for the assessment of different structure learning algorithms in simulation studies, a uniform sample from the space of directed acyclic graphs is required to evaluate the prevalence of certain structural features. Here we analyse how to sample acyclic digraphs uniformly at random through recursive enumeration, an approach previously thought too computationally involved. Based on complexity considerations, we discuss in particular how the enumeration directly provides an exact method, which avoids the convergence issues of the alternative Markov chain methods and is actually computationally much faster. The limiting behaviour of the distribution of acyclic digraphs then allows us to sample arbitrarily large graphs. Building on the ideas of recursive enumeration based sampling we also introduce a novel hybrid Markov chain with much faster convergence than current alternatives while still being easy to adapt to various restrictions. Finally we discuss how to include such restrictions in the combinatorial enumeration and the new hybrid Markov chain method for efficient uniform sampling of the corresponding graphs.Comment: 15 pages, 2 figures. To appear in Statistics and Computin

    Robust computations with dynamical systems

    Get PDF
    In this paper we discuss the computational power of Lipschitz dynamical systems which are robust to in nitesimal perturbations. Whereas the study in [1] was done only for not-so-natural systems from a classical mathematical point of view (discontinuous di erential equation systems, discontinuous piecewise a ne maps, or perturbed Turing machines), we prove that the results presented there can be generalized to Lipschitz and computable dynamical systems. In other words, we prove that the perturbed reachability problem (i.e. the reachability problem for systems which are subjected to in nitesimal perturbations) is co-recursively enumerable for this kind of systems. Using this result we show that if robustness to in nitesimal perturbations is also required, the reachability problem becomes decidable. This result can be interpreted in the following manner: undecidability of veri cation doesn't hold for Lipschitz, computable and robust systems. We also show that the perturbed reachability problem is co-r.e. complete even for C1-systems

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion

    Thirty Years of Virtual Substitution

    Get PDF
    International audienceIn 1988, Weispfenning published a seminal paper introducing a substitution technique for quantifier elimination in the linear theories of ordered and valued fields. The original focus was on complexity bounds including the important result that the decision problem for Tarski Algebra is bounded from below by a double exponential function. Soon after, Weispfenning's group began to implement substitution techniques in software in order to study their potential applicability to real world problems. Today virtual substitution has become an established computational tool, which greatly complements cylindrical algebraic decomposition. There are powerful implementations and applications with a current focus on satisfia-bility modulo theory solving and qualitative analysis of biological networks
    corecore