535 research outputs found

    First principles calculations on CeO2 doped with Tb3+ ions

    Get PDF
    This research was funded by the Latvian Council of Science (under the grant project lzp-2018/1-0147). Authors thank W. Chueh, J. Serra, R. Merkle, A. Popov for fruitful discussions.The atomic and electronic structure of CeO2 doped with Tb has been calculated from first principles with inclusion of strong correlation effects on the basis of Hubbard model (DFT + U). The two values of Hubbard U-parameter were applied separately on Ce and Tb ions, in order to treat correctly two oxidation states of Tb (3 + and 4+). Crystal structure distortion is also discussed for Tb3+ ions in ceria without oxygen vacancies. The corresponding total energy difference between the 3 + and 4 + states is very small and, thus, these states can co-exist without oxygen vacancy formation (unlike Gd doping). Multiple configurations have been obtained with localization of electrons on different number of cations, if the Tb ion has an oxygen vacancy nearby. A site symmetry approach has been successfully applied to identify the ground state configuration. Gibbs formation energy of oxygen vacancy due to Tb doping is reduced by almost a factor of four, in comparison with the pure CeO2. The dependence of Gibbs formation energy on the temperature and oxygen partial pressure is discussed. It has been also shown that the lowest formation energy for the small polaron occurs when the Ce3+ and Tb3+ ions are located as nearest neighbors to oxygen vacancy. The results obtained are compared with the existing literature data from the electrical conductivity and optical measurements.Latvian Council of Science grant project lzp-2018/1-0147; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    The first-principles treatment of the electron-correlation and spin-orbital effects in uranium mononitride nuclear fuels

    Get PDF
    The DFT+U calculations were employed in a detailed study of the strong electron correlation effects in promising nuclear fuel -- uranium mononitride (UN). A simple method for solving the multiple minima problem in DFT+U simulations and insure obtaining the correct ground state is suggested and applied. The crucial role of spin-orbit interactions in reproduction of the U atom total magnetic moment is demonstrated. Basic material properties (the lattice constants, the spin- and total magnetic moments on U atoms, magnetic ordering, and the density of states) were calculated varying the Hubbard U-parameter. Varying the tetragonal unit cell distortion, the meta-stable states have been carefully identified and analyzed. The difference of the magnetic and structural properties obtained for the meta-stable and ground states are discussed. The optimal effective Hubbard parameter Ueff =1.85 eV reproduces correctly the UN anti-ferromagnetic ordering, and only slightly overestimates the experimental total magnetic moment of U atom and the unit cell volume.JRC.E.3-Materials researc

    Investigation of the harmonic balance of the voltage of a two-section frequency converter under different shape of the PWM sweep voltage

    Full text link
    In the proposed article, the analysis of the operation of a two-section frequency converter (DSPCH) assembled on the basis of two series-connected voltage source inverters is considered. The implementation of sinusoidal pulse width modulation for the proposed converter is also considered. The characteristics of the output voltage are presented for different waveforms of the PWM sweep voltage.В предложенной статье рассмотрены вопросы анализа работы двухсекционного преобразователя частоты (ДСПЧ), собранного на базе двух последовательно включенных инверторов напряжения. Также рассматривается вопрос реализации синусоидальной широтно-импульсной модуляции для предложенного преобразователя. Представлены характеристики выходного напряжения при различной форме сигнала развертывающего напряжения ШИМ

    Equation of state SAHA-S meets stellar evolution code CESAM2k

    Full text link
    We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar evolution code CESAM2k. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k code, some additional quantities and their derivatives must be provided. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional interpolation. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations. The proposed module of interpolation procedures can be easily adopted in other evolution codes.Comment: 8 pages, 5 figure

    Ab initio simulations on charged interstitial oxygen migration in corundum

    Get PDF
    We have performed this work within the framework of the EUROfusion Consortium receiving funding from the European grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Authors thank R. Vila, A.I. Popov, A. Luchshik and R.A. Evarestov for fruitful discussions. To carry out large-scale calculations, we have used the HPC supercomputer at Stuttgart University (Germany)We have calculated possible migration trajectories for single-charged interstitial Oi− anion using large-scale hybrid density functional theory within linear combination of atomic orbitals approach to defective α-Al2O3 crystals. The most energetically favorable configuration for charged Oi− anion is formation of pseudo-dumbbell (split interstitial) with a regular Oreg ion. For charged interstitial oxygen migration, the energy barrier turns out to be ∼0.8–1.0 eV. This is considerably smaller than that for a neutral interstitial atoms (1.3 eV), in agreement with experimental data.EUROfusion Consortium receiving funding from the European grant agreement 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Interface-induced enhancement of piezoelectricity in the (SrTiO 3 ) m /(BaTiO 3 ) M−m superlattice for energy harvesting applications

    Get PDF
    This research is funded by the Latvian Council of Science, project No. lzp-2018/1-0147. The computer resources were provided by Stuttgart Supercomputing Center (project DEFTD 12939) and Latvian Super Cluster (LASC). Many thanks to R. Dovesi, A. Erba, and M. Rérat for numerous stimulating discussions.We present the results of a detailed first principles study of the piezoelectric properties of the (SrTiO3)m/(BaTiO3)M−m heterostructure using the 3D STOm/BTOM−m superlattice model. The atomic basis set, hybrid functionals and slabs with different numbers of STO and BTO layers were used. The interplay between ferroelectric (FEz) and antiferrodistortive (AFDz) displacements is carefully analyzed. Based on the experimental data and group theoretical analysis, we deduce two possible space groups of tetragonal symmetry which allow us to reproduce the experimentally known pure STO and BTO bulk phases in the limiting cases, and to model the corresponding intermediate superlattices. The characteristic feature of the space group P4mm (#99) model is atomic displacements in the [001] direction, which allows us to simulate the FEz displacements, whereas the P4 (#75) model besides FEz displacements permits oxygen octahedra antiphase rotations around the [001] direction and thus AFDz displacements. Our calculations demonstrate that for m/M ≤ 0.75 layer ratios both models show similar geometries and piezoelectric constants. Moreover, both models predict an approximately 6-fold increase of the piezoelectric constant e33 compared to the BaTiO3 bulk value, albeit at slightly different layer ratios. The obtained results clearly demonstrate that piezoelectricity arises due to the coordinated collective FEz displacements of atoms in both STO and BTO slabs and interfaces and reaches its maximum when the superlattice approaches the point where the tetragonal phase becomes unstable and transforms to a pseudo-cubic phase. We demonstrate that even a single or double layer of BTO is sufficient to trigger FEz displacements in the STO slab, in P4mm and P4 models, respectively.Latvian Council of Science, project No. lzp-2018/1-0147; Stuttgart Supercomputing Center project DEFTD 12939; Latvian Super Cluster LASC; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
    corecore