29 research outputs found

    Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties

    Get PDF
    We present a study on the magnetic properties of naked and silica-coated Fe3O4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO2 shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO2 functional coating as thin as possible.Comment: 15 pages, 7 figures, 2 table

    COMPLEX - COdesign and power Management in PLatform-based design space EXploration

    No full text
    The consideration of an embedded device's power consumption and its management is increasingly important nowadays. Currently, it is not easily possible to integrate power information already during the platform exploration phase. In this paper, we discuss the design challenges of today's heterogeneous HW/SW systems regarding power and complexity, both for platform vendors as well as system integrators. As a result, we propose a design flow concept that combines system-level power optimization techniques with platform-based rapid prototyping. Virtual executable prototypes are generated from MARTE/UML and functional C/C++ descriptions, which then allows to study different platforms, mapping alternatives and power management strategies. Our proposed flow combines system-level timing and power estimation techniques available in commercial tools with platform-based rapid prototyping. We propose an efficient code annotation technique for timing and power properties that enables fast host execution as well as adaptive collection of power traces. Combined with a flexible design-space exploration (DSE) approach our flow allows a trade-off between different platforms, mapping alternatives, and optimization techniques, based on domain-specific workload scenarios. The proposed flow is currently under implementation in the COMPLEX FP7 European integrated project

    COMPLEX: COdesign and Power Management in PLatform-Based Design Space EXploration

    No full text
    The consideration of an embedded device's power consumption and its management is increasingly important nowadays. Currently, it is not easily possible to integrate power information already during the platform exploration phase. In this paper, we discuss the design challenges of today's heterogeneous HW/SW systems regarding power and complexity, both for platform vendors as well as system integrators. As a result, we propose a design flow concept that combines system-level power optimization techniques with platform-based rapid prototyping. Virtual executable prototypes are generated from MARTE/UML and functional C/C++ descriptions, which then allows to study different platforms, mapping alternatives and power management strategies. Our proposed flow combines system-level timing and power estimation techniques available in commercial tools with platform-based rapid prototyping. We propose an efficient code annotation technique for timing and power properties that enables fast host execution as well as adaptive collection of power traces. Combined with a flexible design-space exploration (DSE) approach our flow allows a trade-off between different platforms, mapping alternatives, and optimization techniques, based on domain-specific workload scenarios. The proposed flow is currently under implementation in the COMPLEX FP7 European integrated project
    corecore