We present a study on the magnetic properties of naked and silica-coated
Fe3O4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as
heating agents was assessed through specific power absorption (SPA)
measurements as a function of particle size and shape. The results show a
strong dependence of the SPA with the particle size, with a maximum around 30
nm, as expected for a Neel relaxation mechanism in single-domain particles. The
SiO2 shell thickness was found to play an important role in the SPA mechanism
by hindering the heat outflow, thus decreasing the heating efficiency. It is
concluded that a compromise between good heating efficiency and surface
functionality for biomedical purposes can be attained by making the SiO2
functional coating as thin as possible.Comment: 15 pages, 7 figures, 2 table