6 research outputs found

    Visualisierung zellulärer Strukturen mittels optimierter Methoden der Kryo-Elektronentomographie

    Get PDF
    Die Kryo-Elektronentomographie (Kryo-ET) ermöglicht als einzigartige Methode die dreidimensionale Visualisierung der makromolekularen Struktur von Eis-eingebetteten Zellen in ihrem nativen Zustand [Baumeister 2005; Leis et al. 2009]. Ziel dieser Arbeit war es einen universellen Einsatz der Kryo-ET bei eukaryotischen Zellen zu ermöglichen. Dazu wurden neue Ansätze entwickelt bzw. bestehende Methoden optimiert. Da bei der Anwendung der Tomographie die Probendicke mit jedem Kippwinkel zunimmt, gilt momentan die Probendicke (< 1 µm) als limitierender Faktor bei der Kryo-ET. Während prokaryotische Zellen nahezu routinemäßig mittels Kryo-ET untersucht werden können, ist dies bei eukaryotischen Zellen nur partiell in peripheren Arealen oder Ausläufern der Zelle möglich. Dies konnte anhand der Untersuchung von intakten, pluripotenten Stammzellen (P19 Zellen) bestätigt werden. Aufgrund ihrer neuronen-ähnlichen dendritischen Morphologie können diese dünnen Bereiche mit dem Elektronenstrahl durchdrungen werden. So konnte in der 3D-Rekonstruktion eines Zellausläufers ein Mitochondrium in seiner nativen Umgebung visualisiert werden. Zudem wurden mehrere ATP-Synthasen in der Cristaemembran identifiziert, die erstmalig die Existenz von ATP-Synthasedimeren in situ bestätigen. Für die Untersuchung von zellmittigen (dicken) Bereichen müssen jedoch andere Methoden angewendet werden. So ermöglicht die Kryo-Ultramikrotomie das Herstellen von Dünnschnitten (< 100 nm) Eis-eingebetteter Proben. Mit Hilfe dieser Methode wurden in dieser Arbeit Kryo-Schnitte von HL-1 Kardiomyozyten erstellt und tomographisch analysiert. Da die Probe sehr heterogen verteilt ist, ist die Suche nach der Zielstruktur im Elektronenmikroskop sehr zeitaufwendig. Gleichzeitig ist die strahlenempfindliche Probe während der Suche dem Elektronenstrahl ausgesetzt, was die Struktur beeinträchtigen kann. Um die ‚Effizienz’ der Kryo-ET an Kryo-Schnitten zu erhöhen, wurden zwei neue Verfahren implementiert: Einerseits die korrelative Kryo-Fluoreszenzmikroskopie, welche sich zur Suche und Identifikation von Mitochondrien innerhalb des Dünnschnittes unter Flüssigstickstoff (LN2)-Temperatur eignet und andererseits eine neue Methode, die das Aufbringen von Goldkolloiden auf Kryo-Schnitten zum späteren Alignieren der Kippserie ermöglicht. Letztere setzt eine Synthese von 10 nm großem, kolloidalem Gold in Toluol voraus. Nach Zugabe von Isopentan werden die auf dem EM-Trägernetzchen (Grid) angehefteten Kryo-Schnitte bei einer Temperatur von -150°C in diese Suspension getaucht. Des Weiteren wurden verschiedene Trägermaterialien zur Kultivierung von Kardiomyozyten getestet und Osmolalitätsmessungen von unterschiedlichen Kryo-Schutz¬lösungen, welche für das Hochdruck-Verfahren notwendig sind, durchgeführt. Auch hier konnten in den 3D-Rekonstruktionen von Kardiomyozyten die ATP-Synthasen eindeutig in Kryo-Schnitten identifiziert werden. Darüber hinaus gelang die 3D-Visualisierung von zwei Mitochondrien, die sich in der Teilungs- oder Fusionsphase befanden. In einem dieser Mitochondrien sind inorganische Ablagerungen sichtbar. Im Verlauf dieser Dissertation wurde zusätzlich die Methode des Cryo-Planings entwickelt; eine Variante der Kryo-Ultramikrotomie. Bei dieser Technik wird die vitrifizierte Probe direkt auf dem EM-Grid gedünnt. Dieses Verfahren ermöglicht es, Material vom vitrifizierten Eisfilm mittels eines Diamantmessers zu entfernen. Dafür wurde ein spezieller Halter für das Kryo-Ultramikrotom konzipiert und hergestellt. Der Halter erlaubt das Zentrieren und Klemmen eines EM-Grids. Um das Abtragen kleinerer Bereiche der Eisoberfläche zu ermöglichen, wurde ein 1 mm breites Diamantmesser angefertigt. Die Analyse der gedünnten Proben mittels Kryo-Scanning Electron Microscopy (SEM) zeigte eine gleichmäßig abgetragene Oberfläche. Schneideartefakte, wie sie bei der Kryo-Ultramikrotomie auftreten, wurden nicht beobachtet. Zudem sind die zellulären Proben im gedünnten Bereich des Eisfilms sehr leicht identifizierbar. Brüche, die möglicherweise durch den Probeneinbau im Eisfilm entstehen, konnten mittels Kryo-SEM bis dato nicht beobachtet werden. Die theoretischen Betrachtungen ergaben, dass unter Verwendung des Cryo-Planings als alleinige Methode elektronentransparente Bereiche (< 1 µm Dicke) hergestellt werden können. Bisher konnte jedoch keine elektronentomographische Untersuchung einer geplanten Probe erfolgen, da sie sich als zu dick erwies. Dies ist darauf zurückzuführen, dass mit dem Stereomikroskop nur eine sehr grobe Abschätzung der tatsächlichen Dicke des abgetragenen Bereichs möglich ist

    Luminal particles within cellular microtubules.

    Get PDF
    The regulation of microtubule dynamics is attributed to microtubule-associated proteins that bind to the microtubule outer surface, but little is known about cellular components that may associate with the internal side of microtubules. We used cryoelectron tomography to investigate in a quantitative manner the three dimensional structure of microtubules in intact mammalian cells. We show that the lumen of microtubules in this native state is filled with discrete, globular particles with a diameter of 7 nm and spacings between 8 and 20 nm in neuronal cells. Cross-sectional views of microtubules confirm the presence of luminal material in vitreous sections of brain tissue. Most of the luminal particles had connections to the microtubule wall, as revealed in tomograms. A higher accumulation of particles was seen near the retracting plus ends of microtubules. The luminal particles were abundant in neurons, but were also observed in other cells, such as astrocytes and stem cells

    Visualisierung zellulärer Strukturen mittels optimierter Methoden der Kryo-Elektronentomographie

    No full text
    Die Kryo-Elektronentomographie (Kryo-ET) ermöglicht als einzigartige Methode die dreidimensionale Visualisierung der makromolekularen Struktur von Eis-eingebetteten Zellen in ihrem nativen Zustand [Baumeister 2005; Leis et al. 2009]. Ziel dieser Arbeit war es einen universellen Einsatz der Kryo-ET bei eukaryotischen Zellen zu ermöglichen. Dazu wurden neue Ansätze entwickelt bzw. bestehende Methoden optimiert. Da bei der Anwendung der Tomographie die Probendicke mit jedem Kippwinkel zunimmt, gilt momentan die Probendicke (< 1 µm) als limitierender Faktor bei der Kryo-ET. Während prokaryotische Zellen nahezu routinemäßig mittels Kryo-ET untersucht werden können, ist dies bei eukaryotischen Zellen nur partiell in peripheren Arealen oder Ausläufern der Zelle möglich. Dies konnte anhand der Untersuchung von intakten, pluripotenten Stammzellen (P19 Zellen) bestätigt werden. Aufgrund ihrer neuronen-ähnlichen dendritischen Morphologie können diese dünnen Bereiche mit dem Elektronenstrahl durchdrungen werden. So konnte in der 3D-Rekonstruktion eines Zellausläufers ein Mitochondrium in seiner nativen Umgebung visualisiert werden. Zudem wurden mehrere ATP-Synthasen in der Cristaemembran identifiziert, die erstmalig die Existenz von ATP-Synthasedimeren in situ bestätigen. Für die Untersuchung von zellmittigen (dicken) Bereichen müssen jedoch andere Methoden angewendet werden. So ermöglicht die Kryo-Ultramikrotomie das Herstellen von Dünnschnitten (< 100 nm) Eis-eingebetteter Proben. Mit Hilfe dieser Methode wurden in dieser Arbeit Kryo-Schnitte von HL-1 Kardiomyozyten erstellt und tomographisch analysiert. Da die Probe sehr heterogen verteilt ist, ist die Suche nach der Zielstruktur im Elektronenmikroskop sehr zeitaufwendig. Gleichzeitig ist die strahlenempfindliche Probe während der Suche dem Elektronenstrahl ausgesetzt, was die Struktur beeinträchtigen kann. Um die ‚Effizienz’ der Kryo-ET an Kryo-Schnitten zu erhöhen, wurden zwei neue Verfahren implementiert: Einerseits die korrelative Kryo-Fluoreszenzmikroskopie, welche sich zur Suche und Identifikation von Mitochondrien innerhalb des Dünnschnittes unter Flüssigstickstoff (LN2)-Temperatur eignet und andererseits eine neue Methode, die das Aufbringen von Goldkolloiden auf Kryo-Schnitten zum späteren Alignieren der Kippserie ermöglicht. Letztere setzt eine Synthese von 10 nm großem, kolloidalem Gold in Toluol voraus. Nach Zugabe von Isopentan werden die auf dem EM-Trägernetzchen (Grid) angehefteten Kryo-Schnitte bei einer Temperatur von -150°C in diese Suspension getaucht. Des Weiteren wurden verschiedene Trägermaterialien zur Kultivierung von Kardiomyozyten getestet und Osmolalitätsmessungen von unterschiedlichen Kryo-Schutz¬lösungen, welche für das Hochdruck-Verfahren notwendig sind, durchgeführt. Auch hier konnten in den 3D-Rekonstruktionen von Kardiomyozyten die ATP-Synthasen eindeutig in Kryo-Schnitten identifiziert werden. Darüber hinaus gelang die 3D-Visualisierung von zwei Mitochondrien, die sich in der Teilungs- oder Fusionsphase befanden. In einem dieser Mitochondrien sind inorganische Ablagerungen sichtbar. Im Verlauf dieser Dissertation wurde zusätzlich die Methode des Cryo-Planings entwickelt; eine Variante der Kryo-Ultramikrotomie. Bei dieser Technik wird die vitrifizierte Probe direkt auf dem EM-Grid gedünnt. Dieses Verfahren ermöglicht es, Material vom vitrifizierten Eisfilm mittels eines Diamantmessers zu entfernen. Dafür wurde ein spezieller Halter für das Kryo-Ultramikrotom konzipiert und hergestellt. Der Halter erlaubt das Zentrieren und Klemmen eines EM-Grids. Um das Abtragen kleinerer Bereiche der Eisoberfläche zu ermöglichen, wurde ein 1 mm breites Diamantmesser angefertigt. Die Analyse der gedünnten Proben mittels Kryo-Scanning Electron Microscopy (SEM) zeigte eine gleichmäßig abgetragene Oberfläche. Schneideartefakte, wie sie bei der Kryo-Ultramikrotomie auftreten, wurden nicht beobachtet. Zudem sind die zellulären Proben im gedünnten Bereich des Eisfilms sehr leicht identifizierbar. Brüche, die möglicherweise durch den Probeneinbau im Eisfilm entstehen, konnten mittels Kryo-SEM bis dato nicht beobachtet werden. Die theoretischen Betrachtungen ergaben, dass unter Verwendung des Cryo-Planings als alleinige Methode elektronentransparente Bereiche (< 1 µm Dicke) hergestellt werden können. Bisher konnte jedoch keine elektronentomographische Untersuchung einer geplanten Probe erfolgen, da sie sich als zu dick erwies. Dies ist darauf zurückzuführen, dass mit dem Stereomikroskop nur eine sehr grobe Abschätzung der tatsächlichen Dicke des abgetragenen Bereichs möglich ist

    Kryo-Elektronentomographie an Thermotoga maritima

    No full text
    corecore