255 research outputs found

    Adiposity, Dysmetabolic Traits, and Earlier Onset of Female Puberty in Adolescent Offspring of Women With Gestational Diabetes Mellitus: A Clinical Study Within the Danish National Birth Cohort

    Get PDF
    OBJECTIVE Offspring of pregnancies affected by gestational diabetes mellitus (GDM) are at increased risk of the development of type 2 diabetes. However, the extent to which these dysmetabolic traits may be due to offspring and/or maternal adiposity is unknown. We examined body composition and associated cardiometabolic traits in 561 9- to 16-year-old offspring of mothers with GDM and 597 control offspring. RESEARCH DESIGN AND METHODS We measured anthropometric characteristics; puberty status; blood pressure; and fasting glucose, insulin, C-peptide, and lipid levels; and conducted a DEXA scan in a subset of the cohort. Differences in the outcomes between offspring of mothers with GDM and control subjects were examined using linear and logistic regression models. RESULTS After adjustment for age and sex, offspring of mothers with GDM displayed higher weight, BMI, waist-to-hip ratio (WHR), systolic blood pressure, and resting heart rate and lower height. Offspring of mothers with GDM had higher total and abdominal fat percentages and lower muscle mass percentages, but these differences disappeared after correction for offspring BMI. The offspring of mothers with GDM displayed higher fasting plasma glucose, insulin, C-peptide, HOMA-insulin resistance (IR), and plasma triglyceride levels, whereas fasting plasma HDL cholesterol levels were decreased. Female offspring of mothers with GDM had an earlier onset of puberty than control offspring. Offspring of mothers with GDM had significantly higher BMI, WHR, fasting glucose, and HOMA-IR levels after adjustment for maternal prepregnancy BMI, and glucose and HOMA-IR remained elevated in the offspring of mothers with GDM after correction for both maternal and offspring BMIs. CONCLUSIONS In summary, adolescent offspring of women with GDM show increased adiposity, an adverse cardiometabolic profile, and earlier onset of puberty among girls. Increased fasting glucose and HOMA-IR levels among the offspring of mothers with GDM may be explained by the programming effects of hyperglycemia in pregnancy. </jats:sec

    Formation of a Silicate L 3 Phase with Continuously Adjustable Pore Sizes

    Get PDF
    the magnitude of the gain. Thus, the delay time of ϳ0.5 s observed in REFERENCES AND NOTES ___________________________ Since the demonstration that surfactants could be used in the fabrication of silica mesophases (1), amphiphiles have been used to produce inorganic materials with a variety of mesomorphic structures, including lamellar, hexagonally packed tubular, and cubic forms (2-12). Surfactant-induced assembly of inorganic structures is now recognized as a way to make novel nanoporous materials with larger pore sizes than was previously possible. However, techniques developed thus far have limited capability to produce very large pores of a predetermined size. Here we describe the synthesis and characterization of a new, random, bicontinuous silicate mesomorph for which predetermined pore sizes, over a very large size range, may be obtained. Most procedures for forming mesoporous silicates rely on the micelle-forming properties of a surfactant, typically at a low surfactant concentration. The addition of an inorganic precursor, such as an alkoxysilane, leads to association and coassembly into a mesophase precipitant whose structural dimensions are controlled by the surfactant length. Polymerization of the inorganic precursor and removal of the surfactant results in a rigid silica shell conforming to the structural shape of the mesophase. However, the use of dilute surfactant solutions limits the ability to predict the topology of the mesophase. Also, the typical product of the process is a powder of micrometer-sized particles, thereby limiting uses in filtration, optical, or electronic applications, where large-area thin films or large uniform monoliths of material are required. Finally, the pore volume is filled with surfactant; that is, the surfactant must be removed before the pores can be accessed. These difficulties may be partially avoided by the use of high-concentration surfactant systems in which either the inorganic precursors minimally perturb a preexisting surfactant-water liquid crystalline (LC) structure or the LC nature of the system may be recovered under appropriate experimental conditions, as shown by Attard et al. (6). Also, because the inorganic precursor does not precipitate out of solution, the resultant material conforms to the shape of the container in which it forms, thereby allowing fabrication of large monoliths of a desired size and shape. However, even in these cases, the pore size is limited by the surfactant and the limited range of compositions on the phase diagram for a given mesomorphic structure. Applications of silicate mesophases as filtration media, optical materials, and nanocomposites would be facilitated if th

    The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Get PDF
    The original publication is available at http://www.jnrbm.com/content/10/1/12Includes bibliographyAbstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmiaPeer Reviewe

    Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in β-Cells

    Get PDF
    OBJECTIVE:Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells.RESEARCH DESIGN AND METHODS:Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis factor-alpha). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to investigate the role of Bad and Bax activation, respectively. [...

    The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates

    Get PDF
    Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Keywords: EndoC-βH1, Pseudoislets, Glucose stimulated insulin secretion, Somatostatin signaling, Proliferatio

    Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination

    Get PDF
    Among the various applications for reversible holographic storage media, a particularly interesting one is time-gated holographic imaging (TGHI). This technique could provide a noninvasive medical diagnosis tool, related to optical coherence tomography. In this technique, biological samples are illuminated within their transparency windowwith near-infrared light, and information about subsurface features is obtained by a detection method that distinguishes between reflected photons originating from a certain depth and those scattered from various depths. Such an application requires reversible holographic storage media with very high sensitivity in the near-infrared. Photorefractive materials, in particular certain amorphous organic systems, are in principle promising candidate media, but their sensitivity has so far been too low, mainly owing to their long response times in the near-infrared. Here we introduce an organic photorefractive material—a composite based on the poly(arylene vinylene) copolymer TPD-PPV—that exhibits favourable near-infrared characteristics. We show that pre-illumination of this material at a shorter wavelength before holographic recording improves the response time by a factor of 40. This process was found to be reversible. We demonstrate multiple holographic recording with this technique at video rate under practical conditions

    The heritability of beta cell function parameters in a mixed meal test design

    Get PDF
    Aims/hypothesis: We estimated the heritability of individual differences in beta cell function after a mixed meal test designed to assess a wide range of classical and model-derived beta cell function parameters. Methods: A total of 183 healthy participants (77 men), recruited from the Netherlands Twin Register, took part in a 4 h protocol, which included a mixed meal test. Participants were Dutch twin pairs and their siblings, aged 20 to 49 years. All members within a family were of the same sex. Insulin sensitivity, insulinogenic index, insulin response and postprandial glycaemia were assessed, as well as model-derived parameters of beta cell function, in particular beta cell glucose sensitivity and insulin secretion rates. Genetic modelling provided the heritability of all traits. Multivariate genetic analyses were performed to test for overlap in the genetic factors influencing beta cell function, waist circumference and insulin sensitivity. Results: Significant heritabilities were found for insulinogenic index (63%), beta cell glucose sensitivity (50%), insulin secretion during the first 2 h postprandial (42-47%) and postprandial glycaemia (43-52%). Genetic factors influencing beta cell glucose sensitivity and insulin secretion during the first 30 postprandial min showed only negligible overlap with the genetic factors that influence waist circumference and insulin sensitivity. Conclusions/interpretation: The highest heritability for postprandial beta cell function was found for the insulinogenic index, but the most specific indices of heritability of beta cell function appeared to be beta cell glucose sensitivity and the insulin secretion rate during the first 30 min after a mixed meal. © The Author(s) 2011

    The Fat Mass and Obesity Associated Gene FTO Functions in the Brain to Regulate Postnatal Growth in Mice

    Get PDF
    FTO (fat mass and obesity associated) was identified as an obesity-susceptibility gene by several independent large-scale genome association studies. A cluster of SNPs (single nucleotide polymorphism) located in the first intron of FTO was found to be significantly associated with obesity-related traits, such as body mass index, hip circumference, and body weight. FTO encodes a protein with a novel C-terminal α-helical domain and an N-terminal double-strand β-helix domain which is conserved in Fe(II) and 2-oxoglutarate-dependent oxygenase family. In vitro, FTO protein can demethylate single-stranded DNA or RNA with a preference for 3-methylthymine or 3-methyluracil. Its physiological substrates and function, however, remain to be defined. Here we report the generation and analysis of mice carrying a conditional deletion allele of Fto. Our results demonstrate that Fto plays an essential role in postnatal growth. The mice lacking Fto completely display immediate postnatal growth retardation with shorter body length, lower body weight, and lower bone mineral density than control mice, but their body compositions are relatively normal. Consistent with the growth retardation, the Fto mutant mice have reduced serum levels of IGF-1. Moreover, despite the ubiquitous expression of Fto, its specific deletion in the nervous system results in similar phenotypes as the whole body deletion, indicating that Fto functions in the central nerve system to regulate postnatal growth
    corecore