17 research outputs found

    Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma

    Get PDF
    PR domain containing 1 with zinc finger domain (PRDM1)/B lymphocyte–induced maturation protein 1 (BLIMP1) is a transcriptional repressor expressed in a subset of germinal center (GC) B cells and in all plasma cells, and required for terminal B cell differentiation. The BLIMP1 locus lies on chromosome 6q21-q22.1, a region frequently deleted in B cell lymphomas, suggesting that it may harbor a tumor suppressor gene. We report here that the BLIMP1 gene is inactivated by structural alterations in 24% (8 out of 34) activated B cell–like diffuse large cell lymphoma (ABC-DLBCL), but not in GC B cell–like (n = 0/37) or unclassified (n = 0/21) DLBCL. BLIMP1 alterations included gene truncations, nonsense mutations, frameshift deletions, and splice site mutations that generate aberrant transcripts encoding truncated BLIMP1 proteins. In all cases studied, both BLIMP1 alleles were inactivated by deletions or mutations. Furthermore, most non–GC type DLBCL cases (n = 20/26, 77%) lack BLIMP1 protein expression, despite the presence of BLIMP1 mRNA. These results indicate that a sizable fraction of ABC-DLBCL carry an inactive BLIMP1 gene, and suggest that the same gene is inactivated by epigenetic mechanisms in an additional large number of cases. These findings point to a role for BLIMP1 as a tumor suppressor gene, whose inactivation may contribute to lymphomagenesis by blocking post–GC differentiation of B cells toward plasma cells

    Genomewide Linkage Analysis of Celiac Disease in Finnish Families

    Get PDF
    Celiac disease (CD), or gluten-sensitive enteropathy, is a common multifactorial disorder resulting from intolerance to cereal prolamins. The only established genetic susceptibility factor is HLA-DQ, which appears to explain only part of the overall genetic risk. We performed a genomewide scan of CD in 60 Finnish families. In addition to strong evidence for linkage to the HLA region at 6p21.3 (Z(max)>5), suggestive evidence for linkage was found for six other chromosomal regions—1p36, 4p15, 5q31, 7q21, 9p21-23, and 16q12. We further analyzed the three most convincing regions—4p15, 5q31, and 7q21—by evaluation of dense marker arrays across each region and by analysis of an additional 38 families. Although multipoint analysis with dense markers provided supportive evidence (multipoint LOD scores 3.25 at 4p15, 1.49 at 5q31, and 1.04 at 7q21) for the initial findings, the additional 38 families did not strengthen evidence for linkage. The role that HLA-DQ plays was studied in more detail by analysis of DQB1 alleles in all 98 families. All but one patient carried one or two HLA-DQ risk alleles, and 65% of HLA-DQ2 carriers were affected. Our study indicates that the HLA region harbors a predominant CD-susceptibility locus in these Finnish families

    A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors

    No full text
    © 2018 The Author(s). We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract. The analysis identified several master regulator proteins, including key regulators of neuroendocrine lineage progenitor state and immunoevasion, whose role as critical tumor dependencies was experimentally confirmed. Transcriptome analysis of GEP-NET-derived cells, perturbed with a library of 107 compounds, identified the HDAC class I inhibitor entinostat as a potent inhibitor of master regulator activity for 42% of metastatic GEP-NET patients, abrogating tumor growth in vivo. This approach may thus complement current efforts in precision oncology
    corecore