24 research outputs found

    Effect of Lipid Characteristics on the Structure of Transmembrane Proteins

    Get PDF
    AbstractThe activity of embedded proteins is known to vary with lipid characteristics. Indeed, it has been shown that some cell-membrane proteins cannot function unless certain non-bilayer-forming lipids (i.e., nonzero spontaneous curvature) are present. In this paper we show that membranes exert a line tension on transmembrane proteins. The line tension, on the order of 1–100kT/protein, varies with the lipid properties and the protein configuration. Thus, membranes composed of different lipids favor different protein conformations. Model predictions are in excellent agreement with the data of Keller et al. (Biophys. J. 1993, 65:23–27) regarding the conductance of alamethicin channels

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Field quantization for open optical cavities

    Get PDF
    We study the quantum properties of the electromagnetic field in optical cavities coupled to an arbitrary number of escape channels. We consider both inhomogeneous dielectric resonators with a scalar dielectric constant ϵ(r)\epsilon({\bf r}) and cavities defined by mirrors of arbitrary shape. Using the Feshbach projector technique we quantize the field in terms of a set of resonator and bath modes. We rigorously show that the field Hamiltonian reduces to the system--and--bath Hamiltonian of quantum optics. The field dynamics is investigated using the input--output theory of Gardiner and Collet. In the case of strong coupling to the external radiation field we find spectrally overlapping resonator modes. The mode dynamics is coupled due to the damping and noise inflicted by the external field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of random lasing.Comment: 16 pages, added references, corrected typo

    Environmental heterogeneity modulates the effect of biodiversity on the spatial variability of grassland biomass

    Get PDF
    Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions
    corecore