273 research outputs found

    Early discontinuation of intravenous antimicrobial therapy in pediatric oncology patients with febrile neutropenia

    Get PDF
    BACKGROUND: There are no standard criteria for when to discontinue intravenous antimicrobial therapy (IVAMT) in children with febrile neutropenia (FN), but it is now common to discontinue IVAMT and discharge patients with an absolute neutrophil count (ANC) ≤ 500 /mm(3). The purpose of this study was to evaluate the outcome of a large cohort of children with FN who had IVAMT discontinued with an ANC ≤ 500 /mm(3) METHODS: A retrospective chart review was completed of patients in the Northern Alberta Children's Cancer Program with FN and no apparent clinical source of fever from June 1, 1997 to July 1, 2002. RESULTS: Out of a total of 275 patients, 127 (46%) had at least one episode of FN, with FN occurring in patients with sarcomas more commonly than in those with leukemia/ lymphoma and least in those with other solid tumors. In 59 of 276 episodes of FN (21%) patients had a microbiologically defined infection at admission. Of the 217 remaining episodes, 112 of 199 patients (56%) with known neutrophil counts had IVAMT discontinued before their absolute neutrophil count (ANC) reached 500 /mm(3 )at the discretion of the clinician. Fever recurred in only two of these patients after discharge, and there were no bacterial infections diagnosed after parenteral antibiotics were discontinued. CONCLUSION: Even without use of standard criteria for early discharge, clinicians appear to be skilled at selecting children with FN who can safely have IVAMT discontinued with an ANC ≤ 500 /mm(3)

    Characterisation of paediatric brain tumours by their MRS metabolite profiles

    Get PDF
    1H‐magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single‐voxel MRS (point‐resolved single‐voxel spectroscopy sequence, 1.5 T: echo time [TE] 23–37 ms/135–144 ms, repetition time [TR] 1500 ms; 3 T: TE 37–41 ms/135–144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann–Whitney U‐tests and Kruskal–Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours

    Coadministration of Adenoviral Vascular Endothelial Growth Factor and Angiopoietin-1 Enhances Vascularization and Reduces Ventricular Remodeling in the Infarcted Myocardium of Type 1 Diabetic Rats

    Get PDF
    OBJECTIVE - Hyperglycemia impairs angiogenesis in response to ischemia, leading to ventricular remodeling. Although the effects of overexpressing angiogenic growth factors have been studied in inducing angiogenesis, the formation of functional vessels remains a challenge. The present study evaluates the reversal of diabetes-mediated impairment of angiogenesis in the infarcted diabetic rat myocardium by proangiogenic gene therapy. RESEARCH DESIGN AND METHODS - Ad.VEGF and Ad.Ang1 were intramyocardially administered in combination immediately after myocardial infarction to nondiabetic and diabetic rats. Ad.LacZ was similarly administered to the respective control groups. The hearts were excised for molecular and immunohistochemical analysis at predetermined time points. The myocardial function was measured by echocardiography 30 days after the intervention. RESULTS - We observed reduced fibrosis and increased capillary/arteriolar density along with reduced ventricular remodeling, as assessed by echocardiography in the treated diabetic animals compared with the nontreated diabetic controls. We also observed increased phosphorylated mitogen-activated protein kinase-activated protein kinase-2, 2 days after the treatment and increased expression of vascular endothelial growth factor (VEGF), Flk-1, angiopoietin-1 (Ang-1), Tie-2, and survivin, 4 days after treatment in the diabetic animals. Gel shift analysis revealed that the combination gene therapy stimulated the DNA binding activity of nuclear factor-κB in the diabetic animals. CONCLUSIONS - Our preclinical data demonstrate the efficacy of coadministration of adenoviral VEGF and Ang-1 in increasing angiogenesis and reducing ventricular remodeling in the infarcted diabetic myocardium. These unique results call for the initiation of a clinical trial to assess the efficacy of this therapeutic strategy in the treatment of diabetes-related human heart failure

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    A Comparison of Different Approaches to Unravel the Latent Structure within Metabolic Syndrome

    Get PDF
    Background: Exploratory factor analysis is a commonly used statistical technique in metabolic syndrome research to uncover latent structure amongst metabolic variables. The application of factor analysis requires methodological decisions that reflect the hypothesis of the metabolic syndrome construct. These decisions often raise the complexity of the interpretation from the output. We propose two alternative techniques developed from cluster analysis which can achieve a clinically relevant structure, whilst maintaining intuitive advantages of clustering methodology. Methods: Two advanced techniques of clustering in the VARCLUS and matroid methods are discussed and implemented on a metabolic syndrome data set to analyze the structure of ten metabolic risk factors. The subjects were selected from the normative aging study based in Boston, Massachusetts. The sample included a total of 847 men aged between 21 and 81 years who provided complete data on selected risk factors during the period 1987 to 1991. Results: Four core components were identified by the clustering methods. These are labelled obesity, lipids, insulin resistance and blood pressure. The exploratory factor analysis with oblique rotation suggested an overlap of the loadings identified on the insulin resistance and obesity factors. The VARCLUS and matroid analyses separated these components and were able to demonstrate associations between individual risk factors. Conclusions: An oblique rotation can be selected to reflect the clinical concept of a single underlying syndrome, howeve

    AKT1 polymorphisms are associated with risk for metabolic syndrome

    Get PDF
    Converging lines of evidence suggest that AKT1 is a major mediator of the responses to insulin, insulin-like growth factor 1 (IGF1), and glucose. AKT1 also plays a key role in the regulation of both muscle cell hypertrophy and atrophy. We hypothesized that AKT1 variants may play a role in the endophenotypes that make up metabolic syndrome. We studied a 12-kb region including the first exon of the AKT1 gene for association with metabolic syndrome-related phenotypes in four study populations [FAMUSS cohort (n = 574; age 23.7 ± 5.7 years), Strong Heart Study (SHS) (n = 2,134; age 55.5 ± 7.9 years), Dynamics of Health, Aging and Body Composition (Health ABC) (n = 3,075; age 73.6 ± 2.9 years), and Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) (n = 175; age 40–65 years)]. We identified a three SNP haplotype that we call H1, which represents the ancestral alleles at the three loci and H2, which represents the derived alleles at the three loci. In young adult European Americans (FAMUSS), H1 was associated with higher fasting glucose levels in females. In middle age Native Americans (SHS), H1 carriers showed higher fasting insulin and HOMA in males, and higher BMI in females. In older African-American and European American subjects (Health ABC) H1 carriers showed a higher incidence of metabolic syndrome. Homozygotes for the H1 haplotype showed about twice the risk of metabolic syndrome in both males and females (p < 0.001). In middle-aged European Americans with insulin resistance (STRRIDE) studied by intravenous glucose tolerance test (IVGTT), H1 carriers showed increased insulin resistance due to the Sg component (p = 0.021). The 12-kb haplotype is a risk factor for metabolic syndrome and insulin resistance that needs to be explored in further populations
    corecore